Yan Ming Voon, Haochen Guo, Kaito Kanamori, Tomoko Ogiyama, Hiroyuki Chaya, Koji Morita, Nobuhiro Nishiyama, Takahiro Nomoto
{"title":"Effect of Spacers on the Affinity of Tyrosine-Modified Polymers to L-Type Amino Acid Transporter 1.","authors":"Yan Ming Voon, Haochen Guo, Kaito Kanamori, Tomoko Ogiyama, Hiroyuki Chaya, Koji Morita, Nobuhiro Nishiyama, Takahiro Nomoto","doi":"10.1021/acs.biomac.4c01591","DOIUrl":null,"url":null,"abstract":"<p><p>L-type amino acid transporter 1 (LAT1), which takes up neutral amino acids such as tyrosine, is overexpressed on various cancer cells, and many researchers have developed LAT1-targeting drug delivery systems (DDSs) by modifying them with substrates of LAT1. However, none of the previous studies have examined the effects of spacers conjugated with substrates on the interaction between the DDSs and LAT1. Here, we developed polymers with tyrosine-based ligands on the side chains via propyl- or triethylene glycol spacers and compared their targetability to that of LAT1. While both polymers exhibited efficient cellular uptake in cancer cells through endocytosis in an LAT1-selective manner, the polymer with the triethylene glycol spacers exhibited higher cellular uptake efficiency than that with the propyl-spacers. Consistently, in the in vivo study with mice bearing subcutaneous tumors, the polymer with the triethylene glycol spacers showed significantly high tumor accumulation and thereby accomplished tumor-selective delivery of photosensitizers, permitting efficient antitumor activity upon photoirradiation. Our results indicate the importance of the spacer structure in designing DDSs targeting amino acid transporters.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"2256-2267"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01591","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
L-type amino acid transporter 1 (LAT1), which takes up neutral amino acids such as tyrosine, is overexpressed on various cancer cells, and many researchers have developed LAT1-targeting drug delivery systems (DDSs) by modifying them with substrates of LAT1. However, none of the previous studies have examined the effects of spacers conjugated with substrates on the interaction between the DDSs and LAT1. Here, we developed polymers with tyrosine-based ligands on the side chains via propyl- or triethylene glycol spacers and compared their targetability to that of LAT1. While both polymers exhibited efficient cellular uptake in cancer cells through endocytosis in an LAT1-selective manner, the polymer with the triethylene glycol spacers exhibited higher cellular uptake efficiency than that with the propyl-spacers. Consistently, in the in vivo study with mice bearing subcutaneous tumors, the polymer with the triethylene glycol spacers showed significantly high tumor accumulation and thereby accomplished tumor-selective delivery of photosensitizers, permitting efficient antitumor activity upon photoirradiation. Our results indicate the importance of the spacer structure in designing DDSs targeting amino acid transporters.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.