Hao Zhang, Run Zhang, Zhengjun Chen, Fang Yuan, Qiang Yang, Bo Liu
{"title":"Experimental and theoretical study on the gas holdup feature in a 1.5-m tall alkaline water electrolytic cell","authors":"Hao Zhang, Run Zhang, Zhengjun Chen, Fang Yuan, Qiang Yang, Bo Liu","doi":"10.1002/aic.18814","DOIUrl":null,"url":null,"abstract":"Gas–liquid two-phase flow in alkaline water electrolysis critically influences current density and efficiency, yet quantitative insights remain limited. This work examines gas holdup and bubble size distribution in a custom-designed 1.5-m high-electrolytic cell, mimicking an industrial press-filter design. Results reveal that gas holdup increases with cell height and current density due to cumulative gas production, while higher electrolyte flow velocity reduces holdup by accelerating bubble transport. The average electrolytic bubble size d<sub>43</sub> evolves significantly from ~100 μm near the bottom to ~300 μm at the top of the cell, driven by coalescence and influenced by electrolysis current. A one-dimensional drift-flux model identified cell height, current density, electrolyte circulation rate, and bubble size as critical determinants of gas holdup. Theoretical predictions demonstrate that increasing d<sub>43</sub> from 130 to 270 μm can halve gas holdup, highlighting bubble size regulation as a key strategy for reducing gas holdup to enhance electrolyzer performance.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"212 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gas–liquid two-phase flow in alkaline water electrolysis critically influences current density and efficiency, yet quantitative insights remain limited. This work examines gas holdup and bubble size distribution in a custom-designed 1.5-m high-electrolytic cell, mimicking an industrial press-filter design. Results reveal that gas holdup increases with cell height and current density due to cumulative gas production, while higher electrolyte flow velocity reduces holdup by accelerating bubble transport. The average electrolytic bubble size d43 evolves significantly from ~100 μm near the bottom to ~300 μm at the top of the cell, driven by coalescence and influenced by electrolysis current. A one-dimensional drift-flux model identified cell height, current density, electrolyte circulation rate, and bubble size as critical determinants of gas holdup. Theoretical predictions demonstrate that increasing d43 from 130 to 270 μm can halve gas holdup, highlighting bubble size regulation as a key strategy for reducing gas holdup to enhance electrolyzer performance.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.