The origin of the uniaxial magnetic anisotropy in Fe/GaAs(100) system

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yu Yan, Bo Liu, Xianyang Lu, Junlin Wang, Sarnjeet S. Dhesi, Iain G. Will, Vlado K. Lazarov, Jun Du, Jing Wu, Rong Zhang, Yongbing Xu
{"title":"The origin of the uniaxial magnetic anisotropy in Fe/GaAs(100) system","authors":"Yu Yan, Bo Liu, Xianyang Lu, Junlin Wang, Sarnjeet S. Dhesi, Iain G. Will, Vlado K. Lazarov, Jun Du, Jing Wu, Rong Zhang, Yongbing Xu","doi":"10.1063/5.0253345","DOIUrl":null,"url":null,"abstract":"Fe/GaAs is a prototype system of spin injection at room temperature. The interfacial strain and oriented bonds are both considered the origin of the Fe in-plane uniaxial magnetic anisotropy (UMA), which remains decisive. Here, by the x-ray magnetic circular dichroism (XMCD) and the vibrating sample magnetometer measurements, this study shows that in the Fe/Cr(t)/GaAs structure, the in-plane UMA of Fe originates from the chemical bonding between the Fe and the GaAs substrate by varying Cr thickness, t. The UMA drops as the Cr coverage increases, characterized by a decrease in the saturation field from 2400 to 57 Oe. The XMCD studies reveal that the Fe orbital moment, a signature of chemical bonds, decreases from 0.216 μB at Cr = 0 ML to 0.138 μB at Cr = 5 ML. The reduction of the Fe orbital moment and the UMA are qualitatively consistent, establishing a link between the UMA and the interfacial chemical bonds. The decreased UMA remains unchanged at t > 5 ML, above which Fe and GaAs are fully separated by a continuous Cr layer. Our findings provide clear experimental evidence that the UMA in the Fe/GaAs system originates from the oriented interface bonds, clarifying the UMA origin in this prototype system.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"193 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0253345","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fe/GaAs is a prototype system of spin injection at room temperature. The interfacial strain and oriented bonds are both considered the origin of the Fe in-plane uniaxial magnetic anisotropy (UMA), which remains decisive. Here, by the x-ray magnetic circular dichroism (XMCD) and the vibrating sample magnetometer measurements, this study shows that in the Fe/Cr(t)/GaAs structure, the in-plane UMA of Fe originates from the chemical bonding between the Fe and the GaAs substrate by varying Cr thickness, t. The UMA drops as the Cr coverage increases, characterized by a decrease in the saturation field from 2400 to 57 Oe. The XMCD studies reveal that the Fe orbital moment, a signature of chemical bonds, decreases from 0.216 μB at Cr = 0 ML to 0.138 μB at Cr = 5 ML. The reduction of the Fe orbital moment and the UMA are qualitatively consistent, establishing a link between the UMA and the interfacial chemical bonds. The decreased UMA remains unchanged at t > 5 ML, above which Fe and GaAs are fully separated by a continuous Cr layer. Our findings provide clear experimental evidence that the UMA in the Fe/GaAs system originates from the oriented interface bonds, clarifying the UMA origin in this prototype system.
铁/砷化镓是室温下自旋注入的原型系统。界面应变和取向键都被认为是铁平面内单轴磁各向异性(UMA)的起源,而这仍然是决定性的。本研究通过 X 射线磁性圆二色性(XMCD)和振动样品磁力计测量表明,在铁/铬(t)/砷化镓结构中,铁的面内单轴磁各向异性源于铁和砷化镓衬底之间的化学键,通过改变铬的厚度 t 来实现。XMCD 研究表明,作为化学键标志的铁轨道矩从 Cr = 0 ML 时的 0.216 μB 减小到 Cr = 5 ML 时的 0.138 μB。铁轨道力矩的减小与 UMA 在性质上是一致的,从而建立了 UMA 与界面化学键之间的联系。在 t > 5 ML 时,降低的 UMA 保持不变,此时铁和砷化镓完全被连续的铬层隔开。我们的研究结果提供了明确的实验证据,证明 Fe/GaAs 系统中的 UMA 源自取向界面键,从而澄清了该原型系统中 UMA 的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信