Xiaomin Wen, Alex K. Hu, Scott R. Presnell, Emily S. Ford, David M. Koelle, William W. Kwok
{"title":"Longitudinal single cell profiling of epitope specific memory CD4+ T cell responses to recombinant zoster vaccine","authors":"Xiaomin Wen, Alex K. Hu, Scott R. Presnell, Emily S. Ford, David M. Koelle, William W. Kwok","doi":"10.1038/s41467-025-57562-7","DOIUrl":null,"url":null,"abstract":"<p>Vaccination leads to rapid expansion of antigen-specific T cells within in the first few days. However, understanding of transcriptomic changes and fates of antigen-specific T cells upon vaccination remains limited. Here, we investigate the fate of memory CD4+ T cells upon reactivation to recombinant zoster vaccine for shingles at cellular and transcriptional levels. We show that glycoprotein E-specific memory CD4+ T cells respond strongly, their frequencies remain high, and they retain markers of cell activation one year following vaccination. Memory T cells with the most dominant TCR clonotype pre-vaccination remain prevalent at year one post-vaccination. These data implicate a major role for pre-existing memory T cells in perpetuating immune repertoires upon re-encountering cognate antigens. Differential gene expression indicates that cells post-vaccination are distinct from cells at baseline, suggesting committed memory T cells display transcriptional changes upon vaccination that could alter their responses against cognate immunogens.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"68 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57562-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccination leads to rapid expansion of antigen-specific T cells within in the first few days. However, understanding of transcriptomic changes and fates of antigen-specific T cells upon vaccination remains limited. Here, we investigate the fate of memory CD4+ T cells upon reactivation to recombinant zoster vaccine for shingles at cellular and transcriptional levels. We show that glycoprotein E-specific memory CD4+ T cells respond strongly, their frequencies remain high, and they retain markers of cell activation one year following vaccination. Memory T cells with the most dominant TCR clonotype pre-vaccination remain prevalent at year one post-vaccination. These data implicate a major role for pre-existing memory T cells in perpetuating immune repertoires upon re-encountering cognate antigens. Differential gene expression indicates that cells post-vaccination are distinct from cells at baseline, suggesting committed memory T cells display transcriptional changes upon vaccination that could alter their responses against cognate immunogens.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.