An Oxidative Stress Nanoamplifier with Efficient Non-Fenton-Type Hydroxyl Radical Generation and Sulfur Dioxide Release for Synergistic Treatment of Tumor

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shasha Zhao, Zhonghuan Qu, Likai Wang, Peng Gu, Juan Mou, Shiping Yang, Huixia Wu
{"title":"An Oxidative Stress Nanoamplifier with Efficient Non-Fenton-Type Hydroxyl Radical Generation and Sulfur Dioxide Release for Synergistic Treatment of Tumor","authors":"Shasha Zhao, Zhonghuan Qu, Likai Wang, Peng Gu, Juan Mou, Shiping Yang, Huixia Wu","doi":"10.1021/acsami.5c01310","DOIUrl":null,"url":null,"abstract":"Overcoming tumor antioxidant defenses remains a critical challenge for reactive-oxygen-species-mediated tumor therapies. To address this problem, herein, a theranostic nanomedicine designated as CCM@MIB has been elaborately constructed. Homologous cancer cell membrane (CCM) camouflage significantly enhances the selective accumulation of the nanomedicine at tumor sites. In response to the tumor microenvironment (TME), CCM@MIB controllably releases Mn ions and sulfur dioxide (SO<sub>2</sub>) molecules. The released Mn ions catalyze the self-oxidation of isoniazid to generate highly toxic •OH, while the SO<sub>2</sub> produced by benzothiazole sulfinate effectively disrupts tumor antioxidant defense systems. The catalase-like activity endowed by Mn ions and the increased intracellular •O<sub>2</sub><sup>–</sup> level induced by SO<sub>2</sub> further promote •OH production. Therefore, such an intellectual combination of non-Fenton-type catalytic therapy and SO<sub>2</sub> gas therapy significantly amplifies oxidative stress and efficiently suppresses tumor growth. Additionally, the TME-activated magnetic resonance imaging contrast performance of CCM@MIB is beneficial for guiding antitumor treatment. This considerate strategy designed in our work provides an ingenious paradigm for the development of efficient antitumor therapies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"68 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01310","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Overcoming tumor antioxidant defenses remains a critical challenge for reactive-oxygen-species-mediated tumor therapies. To address this problem, herein, a theranostic nanomedicine designated as CCM@MIB has been elaborately constructed. Homologous cancer cell membrane (CCM) camouflage significantly enhances the selective accumulation of the nanomedicine at tumor sites. In response to the tumor microenvironment (TME), CCM@MIB controllably releases Mn ions and sulfur dioxide (SO2) molecules. The released Mn ions catalyze the self-oxidation of isoniazid to generate highly toxic •OH, while the SO2 produced by benzothiazole sulfinate effectively disrupts tumor antioxidant defense systems. The catalase-like activity endowed by Mn ions and the increased intracellular •O2 level induced by SO2 further promote •OH production. Therefore, such an intellectual combination of non-Fenton-type catalytic therapy and SO2 gas therapy significantly amplifies oxidative stress and efficiently suppresses tumor growth. Additionally, the TME-activated magnetic resonance imaging contrast performance of CCM@MIB is beneficial for guiding antitumor treatment. This considerate strategy designed in our work provides an ingenious paradigm for the development of efficient antitumor therapies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信