A self-training spiking superconducting neuromorphic architecture.

npj Unconventional Computing Pub Date : 2025-01-01 Epub Date: 2025-03-04 DOI:10.1038/s44335-025-00021-9
M L Schneider, E M Jué, M R Pufall, K Segall, C W Anderson
{"title":"A self-training spiking superconducting neuromorphic architecture.","authors":"M L Schneider, E M Jué, M R Pufall, K Segall, C W Anderson","doi":"10.1038/s44335-025-00021-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromorphic computing takes biological inspiration to the device level aiming to improve computational efficiency and capabilities. One of the major issues that arises is the training of neuromorphic hardware systems. Typically training algorithms require global information and are thus inefficient to implement directly in hardware. In this paper we describe a set of reinforcement learning based, local weight update rules and their implementation in superconducting hardware. Using SPICE circuit simulations, we implement a small-scale neural network with a learning time of order one nanosecond per update. This network can be trained to learn new functions simply by changing the target output for a given set of inputs, without the need for any external adjustments to the network. Further, this architecture does not require programing explicit weight values in the network, alleviating a critical challenge with analog hardware implementations of neural networks.</p>","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":"2 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44335-025-00021-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing takes biological inspiration to the device level aiming to improve computational efficiency and capabilities. One of the major issues that arises is the training of neuromorphic hardware systems. Typically training algorithms require global information and are thus inefficient to implement directly in hardware. In this paper we describe a set of reinforcement learning based, local weight update rules and their implementation in superconducting hardware. Using SPICE circuit simulations, we implement a small-scale neural network with a learning time of order one nanosecond per update. This network can be trained to learn new functions simply by changing the target output for a given set of inputs, without the need for any external adjustments to the network. Further, this architecture does not require programing explicit weight values in the network, alleviating a critical challenge with analog hardware implementations of neural networks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信