A self-training spiking superconducting neuromorphic architecture.

npj Unconventional Computing Pub Date : 2025-01-01 Epub Date: 2025-03-04 DOI:10.1038/s44335-025-00021-9
M L Schneider, E M Jué, M R Pufall, K Segall, C W Anderson
{"title":"A self-training spiking superconducting neuromorphic architecture.","authors":"M L Schneider, E M Jué, M R Pufall, K Segall, C W Anderson","doi":"10.1038/s44335-025-00021-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromorphic computing takes biological inspiration to the device level aiming to improve computational efficiency and capabilities. One of the major issues that arises is the training of neuromorphic hardware systems. Typically training algorithms require global information and are thus inefficient to implement directly in hardware. In this paper we describe a set of reinforcement learning based, local weight update rules and their implementation in superconducting hardware. Using SPICE circuit simulations, we implement a small-scale neural network with a learning time of order one nanosecond per update. This network can be trained to learn new functions simply by changing the target output for a given set of inputs, without the need for any external adjustments to the network. Further, this architecture does not require programing explicit weight values in the network, alleviating a critical challenge with analog hardware implementations of neural networks.</p>","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":"2 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44335-025-00021-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing takes biological inspiration to the device level aiming to improve computational efficiency and capabilities. One of the major issues that arises is the training of neuromorphic hardware systems. Typically training algorithms require global information and are thus inefficient to implement directly in hardware. In this paper we describe a set of reinforcement learning based, local weight update rules and their implementation in superconducting hardware. Using SPICE circuit simulations, we implement a small-scale neural network with a learning time of order one nanosecond per update. This network can be trained to learn new functions simply by changing the target output for a given set of inputs, without the need for any external adjustments to the network. Further, this architecture does not require programing explicit weight values in the network, alleviating a critical challenge with analog hardware implementations of neural networks.

一个自我训练的尖峰超导神经形态结构。
神经形态计算将生物学灵感带到设备层面,旨在提高计算效率和能力。出现的主要问题之一是神经形态硬件系统的训练。通常,训练算法需要全局信息,因此直接在硬件中实现效率低下。本文描述了一套基于强化学习的局部权重更新规则及其在超导硬件中的实现。利用SPICE电路模拟,我们实现了一个小规模的神经网络,每次更新的学习时间为1纳秒。这个网络可以简单地通过改变给定输入集的目标输出来训练学习新函数,而不需要对网络进行任何外部调整。此外,该架构不需要在网络中编程显式权重值,从而减轻了神经网络模拟硬件实现的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信