{"title":"Manipulating cybersickness in virtual reality-based neurofeedback and its effects on training performance.","authors":"Lisa M Berger, Guilherme Wood, Silvia E Kober","doi":"10.1088/1741-2552/adbd76","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Virtual reality (VR) serves as a modern and powerful tool to enrich neurofeedback (NF) and brain-computer interface (BCI) applications as well as to achieve higher user motivation and adherence to training. However, between 20%-80% of all the users develop symptoms of cybersickness (CS), namely nausea, oculomotor problems or disorientation during VR interaction, which influence user performance and behavior in VR. Hence, we investigated whether CS-inducing VR paradigms influence the success of a NF training task.<i>Approach</i>. We tested 39 healthy participants (20 female) in a single-session VR-based NF study. One half of the participants was presented with a high CS-inducing VR-environment where movement speed, field of view and camera angle were varied in a CS-inducing fashion throughout the session and the other half underwent NF training in a less CS-inducing VR environment, where those parameters were held constant. The NF training consisted of 6 runs of 3 min each, in which participants should increase their sensorimotor rhythm (SMR, 12-15 Hz) while keeping artifact control frequencies constant (Theta 4-7 Hz, Beta 16-30 Hz). Heart rate and subjectively experienced CS were also assessed.<i>Main results</i>. The high CS-inducing condition tended to lead to more subjectively experienced CS nausea symptoms than the low CS-inducing condition. Further, women experienced more CS, a higher heart rate and showed a worse NF performance compared to men. However, the SMR activity during the NF training was comparable between both the high and low CS-inducing groups. Both groups were able to increase their SMR across feedback runs, although, there was a tendency of higher SMR power for male participants in the low CS group.<i>Significance</i>. Hence, sickness symptoms in VR do not necessarily impair NF/BCI training success. This takes us one step further in evaluating the practicability of VR in BCI and NF applications. Nevertheless, inter-individual differences in CS susceptibility should be taken into account for VR-based NF applications.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adbd76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Virtual reality (VR) serves as a modern and powerful tool to enrich neurofeedback (NF) and brain-computer interface (BCI) applications as well as to achieve higher user motivation and adherence to training. However, between 20%-80% of all the users develop symptoms of cybersickness (CS), namely nausea, oculomotor problems or disorientation during VR interaction, which influence user performance and behavior in VR. Hence, we investigated whether CS-inducing VR paradigms influence the success of a NF training task.Approach. We tested 39 healthy participants (20 female) in a single-session VR-based NF study. One half of the participants was presented with a high CS-inducing VR-environment where movement speed, field of view and camera angle were varied in a CS-inducing fashion throughout the session and the other half underwent NF training in a less CS-inducing VR environment, where those parameters were held constant. The NF training consisted of 6 runs of 3 min each, in which participants should increase their sensorimotor rhythm (SMR, 12-15 Hz) while keeping artifact control frequencies constant (Theta 4-7 Hz, Beta 16-30 Hz). Heart rate and subjectively experienced CS were also assessed.Main results. The high CS-inducing condition tended to lead to more subjectively experienced CS nausea symptoms than the low CS-inducing condition. Further, women experienced more CS, a higher heart rate and showed a worse NF performance compared to men. However, the SMR activity during the NF training was comparable between both the high and low CS-inducing groups. Both groups were able to increase their SMR across feedback runs, although, there was a tendency of higher SMR power for male participants in the low CS group.Significance. Hence, sickness symptoms in VR do not necessarily impair NF/BCI training success. This takes us one step further in evaluating the practicability of VR in BCI and NF applications. Nevertheless, inter-individual differences in CS susceptibility should be taken into account for VR-based NF applications.