Wenjing Feng, Hongfei Suo, Ying Ma, Hanwei Cheng, Peng Gao, Yunze Lei, Sha An, Juanjuan Zheng, Min Liu
{"title":"Confocal Laser Scanning Platform Combined With In Situ High-Resolution Quantitative Phase Imaging","authors":"Wenjing Feng, Hongfei Suo, Ying Ma, Hanwei Cheng, Peng Gao, Yunze Lei, Sha An, Juanjuan Zheng, Min Liu","doi":"10.1002/jbio.202500010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces an advanced dual-modality imaging platform by integrating a confocal laser scanning/imaging module with flat-fielding quantitative phase contrast microscopy (FF-QPCM). The platform enables phase/fluorescence dual-modality imaging of the same samples with high resolution and contrast. Using this platform, we observed that confocal fluorescence excitation causes minimal damage to cells, whereas wide-field fluorescence excitation (WFE) results in significant damage, particularly mitochondrial fragmentation and notable alterations in phase values. Additionally, in situ quantitative phase imaging was conducted on live COS7 cells with a specific region irradiated by a confocal laser. The results demonstrated that 5-min continuous confocal laser irradiation affects only COS7 cells with fluorescently labeled mitochondria, causing mitochondrial dysfunction throughout the cell. These findings suggest that integrating FF-QPCM with a confocal laser scanning/imaging module offers a highly efficient, sensitive, and information-rich tool for cell biology research, with broad application potential.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500010","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an advanced dual-modality imaging platform by integrating a confocal laser scanning/imaging module with flat-fielding quantitative phase contrast microscopy (FF-QPCM). The platform enables phase/fluorescence dual-modality imaging of the same samples with high resolution and contrast. Using this platform, we observed that confocal fluorescence excitation causes minimal damage to cells, whereas wide-field fluorescence excitation (WFE) results in significant damage, particularly mitochondrial fragmentation and notable alterations in phase values. Additionally, in situ quantitative phase imaging was conducted on live COS7 cells with a specific region irradiated by a confocal laser. The results demonstrated that 5-min continuous confocal laser irradiation affects only COS7 cells with fluorescently labeled mitochondria, causing mitochondrial dysfunction throughout the cell. These findings suggest that integrating FF-QPCM with a confocal laser scanning/imaging module offers a highly efficient, sensitive, and information-rich tool for cell biology research, with broad application potential.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.