Capturing cell-type-specific activities of cis-regulatory elements from peak-based single-cell ATAC-seq.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-03-12 Epub Date: 2025-03-05 DOI:10.1016/j.xgen.2025.100806
Mengjie Chen
{"title":"Capturing cell-type-specific activities of cis-regulatory elements from peak-based single-cell ATAC-seq.","authors":"Mengjie Chen","doi":"10.1016/j.xgen.2025.100806","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell ATAC sequencing (scATAC-seq), a state-of-the-art genomic technique designed to map chromatin accessibility at the single-cell level, presents unique analytical challenges due to limited sampling and data sparsity. In this study, we use case studies to highlight the limitations of conventional peak-based methods for processing scATAC-seq data. These methods can fail to capture precise cell-type-specific regulatory signals, producing results that are difficult to interpret and lack portability, thereby compromising the reproducibility of research findings. To overcome these issues, we introduce CREscendo, a method that utilizes Tn5 cleavage frequencies and regulatory annotations to identify differential usage of candidate regulatory elements (CREs) across cell types. Our research advocates for moving away from traditional peak-based quantification in scATAC-seq toward a more robust framework that relies on a standardized reference of annotated CREs, enhancing both the accuracy and reproducibility of genomic studies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100806"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell ATAC sequencing (scATAC-seq), a state-of-the-art genomic technique designed to map chromatin accessibility at the single-cell level, presents unique analytical challenges due to limited sampling and data sparsity. In this study, we use case studies to highlight the limitations of conventional peak-based methods for processing scATAC-seq data. These methods can fail to capture precise cell-type-specific regulatory signals, producing results that are difficult to interpret and lack portability, thereby compromising the reproducibility of research findings. To overcome these issues, we introduce CREscendo, a method that utilizes Tn5 cleavage frequencies and regulatory annotations to identify differential usage of candidate regulatory elements (CREs) across cell types. Our research advocates for moving away from traditional peak-based quantification in scATAC-seq toward a more robust framework that relies on a standardized reference of annotated CREs, enhancing both the accuracy and reproducibility of genomic studies.

从基于峰的单细胞ATAC-seq中捕获顺式调控元件的细胞类型特异性活性。
单细胞ATAC测序(scATAC-seq)是一种最先进的基因组技术,旨在绘制单细胞水平的染色质可及性,由于采样有限和数据稀疏性,提出了独特的分析挑战。在本研究中,我们使用案例研究来强调传统的基于峰的方法处理scATAC-seq数据的局限性。这些方法可能无法捕获精确的细胞类型特异性调节信号,产生难以解释和缺乏可移植性的结果,从而影响研究结果的可重复性。为了克服这些问题,我们引入了CREscendo,一种利用Tn5切割频率和调控注释来识别不同细胞类型的候选调控元件(cre)使用差异的方法。我们的研究主张从scATAC-seq中传统的基于峰的定量转向一个更强大的框架,该框架依赖于注释cre的标准化参考,从而提高基因组研究的准确性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信