Ioannis-Marios Roussis, David J Pearton, Umar Niazi, Grigorios Tsaknakis, Giorgio L Papadopoulos, Riley Cook, Mansoor Saqi, Jiannis Ragoussis, John Strouboulis
{"title":"A novel role for Friend of GATA1 (FOG-1) in regulating cholesterol transport in murine erythropoiesis.","authors":"Ioannis-Marios Roussis, David J Pearton, Umar Niazi, Grigorios Tsaknakis, Giorgio L Papadopoulos, Riley Cook, Mansoor Saqi, Jiannis Ragoussis, John Strouboulis","doi":"10.1371/journal.pgen.1011617","DOIUrl":null,"url":null,"abstract":"<p><p>Friend of GATA1 (FOG-1) is an essential transcriptional co-factor of the master erythroid transcription factor GATA1. The knockout of the Zfpm1 gene, coding for FOG-1, results in early embryonic lethality due to anemia in mice, similar to the embryonic lethal phenotype of the Gata1 gene knockout. However, a detailed molecular analysis of the Zfpm1 knockout phenotype in erythropoiesis is presently incomplete. To this end, we used CRISPR/Cas9 to knockout Zfpm1 in mouse erythroleukemic (MEL) cells. Phenotypic characterization of DMSO-induced terminal erythroid differentiation showed that the Zfpm1 knockout MEL cells did not progress past the proerythroblast stage of differentiation. Expression profiling of the Zfpm1 knockout MEL cells by RNAseq showed a lack of up-regulation of erythroid-related gene expression profiles. Bioinformatic analysis highlighted cholesterol transport as a pathway affected in the Zfpm1 knockout cells. Moreover, we show that the cholesterol transporters Abca1 and Ldlr fail to be repressed during erythroid differentiation in Zfpm1 knockout cells, resulting in higher intracellular lipid levels and higher membrane fluidity. We also show that in FOG-1 knockout cells, the nuclear levels of SREBP2, a key transcriptional regulator of cholesterol biosynthesis and transport, are markedly increased. On the basis of these findings we propose that FOG-1 (and, potentially, GATA1) regulate cholesterol homeostasis during erythroid differentiation directly through the down regulation of cholesterol transport genes and indirectly, through the repression of the SREBP2 transcriptional activator of cholesterol homeostasis. Taken together, our work provides a molecular basis for understanding FOG-1 functions in erythropoiesis and reveals a novel role for FOG-1 in cholesterol transport.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011617"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011617","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Friend of GATA1 (FOG-1) is an essential transcriptional co-factor of the master erythroid transcription factor GATA1. The knockout of the Zfpm1 gene, coding for FOG-1, results in early embryonic lethality due to anemia in mice, similar to the embryonic lethal phenotype of the Gata1 gene knockout. However, a detailed molecular analysis of the Zfpm1 knockout phenotype in erythropoiesis is presently incomplete. To this end, we used CRISPR/Cas9 to knockout Zfpm1 in mouse erythroleukemic (MEL) cells. Phenotypic characterization of DMSO-induced terminal erythroid differentiation showed that the Zfpm1 knockout MEL cells did not progress past the proerythroblast stage of differentiation. Expression profiling of the Zfpm1 knockout MEL cells by RNAseq showed a lack of up-regulation of erythroid-related gene expression profiles. Bioinformatic analysis highlighted cholesterol transport as a pathway affected in the Zfpm1 knockout cells. Moreover, we show that the cholesterol transporters Abca1 and Ldlr fail to be repressed during erythroid differentiation in Zfpm1 knockout cells, resulting in higher intracellular lipid levels and higher membrane fluidity. We also show that in FOG-1 knockout cells, the nuclear levels of SREBP2, a key transcriptional regulator of cholesterol biosynthesis and transport, are markedly increased. On the basis of these findings we propose that FOG-1 (and, potentially, GATA1) regulate cholesterol homeostasis during erythroid differentiation directly through the down regulation of cholesterol transport genes and indirectly, through the repression of the SREBP2 transcriptional activator of cholesterol homeostasis. Taken together, our work provides a molecular basis for understanding FOG-1 functions in erythropoiesis and reveals a novel role for FOG-1 in cholesterol transport.
GATA1之友(Friend of GATA1, fog1)在小鼠红细胞生成中调节胆固醇转运的新作用。
GATA1之友(Friend of GATA1, FOG-1)是主红系转录因子GATA1必不可少的转录辅助因子。敲除编码FOG-1的Zfpm1基因会导致小鼠因贫血导致的早期胚胎致死,类似于敲除Gata1基因的胚胎致死表型。然而,对红细胞生成中Zfpm1敲除表型的详细分子分析目前尚不完整。为此,我们使用CRISPR/Cas9敲除小鼠红细胞白血病(MEL)细胞中的Zfpm1。dmso诱导的末梢红细胞分化的表型特征显示,敲除Zfpm1的MEL细胞未进入成红细胞原分化阶段。通过RNAseq对Zfpm1敲除MEL细胞的表达谱分析显示,红细胞相关基因表达谱缺乏上调。生物信息学分析强调胆固醇转运是Zfpm1敲除细胞受影响的途径。此外,我们发现胆固醇转运体Abca1和Ldlr在Zfpm1敲除细胞的红系分化过程中未能被抑制,导致细胞内脂质水平升高和膜流动性提高。我们还发现,在fog1敲除细胞中,胆固醇生物合成和运输的关键转录调节因子SREBP2的核水平显著增加。基于这些发现,我们提出,在红细胞分化过程中,fog1(以及潜在的GATA1)通过下调胆固醇转运基因直接调节胆固醇稳态,并通过抑制胆固醇稳态转录激活因子SREBP2间接调节胆固醇稳态。综上所述,我们的工作为理解fog1在红细胞生成中的功能提供了分子基础,并揭示了fog1在胆固醇转运中的新作用。
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.