Basile Rambaud, Mathieu Joseph, Feng-Ching Tsai, Camille De Jamblinne, Regina Strakhova, Emmanuelle Del Guidice, Renata Sabelli, Matthew J Smith, Patricia Bassereau, David R Hipfner, Sébastien Carréno
{"title":"Slik sculpts the plasma membrane into cytonemes to control cell-cell communication.","authors":"Basile Rambaud, Mathieu Joseph, Feng-Ching Tsai, Camille De Jamblinne, Regina Strakhova, Emmanuelle Del Guidice, Renata Sabelli, Matthew J Smith, Patricia Bassereau, David R Hipfner, Sébastien Carréno","doi":"10.1038/s44318-025-00401-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cytonemes are signaling filopodia that facilitate long-range cell-cell communication by forming synapses between cells. Initially discovered in Drosophila for transporting morphogens during embryogenesis, they have since been identified in mammalian cells and implicated in carcinogenesis. Despite their importance, mechanisms controlling cytoneme biogenesis remain elusive. Here, we demonstrate that the Ser/Thr kinase Slik drives remote cell proliferation by promoting cytoneme formation. This function depends on the coiled-coil domain of Slik (SlikCCD), which directly sculpts membranes into tubules. Importantly, Slik plays opposing roles in cytoneme biogenesis: its membrane-sculpting activity promotes cytoneme formation, but this is counteracted by its kinase activity, which enhances actin association with the plasma membrane via Moesin phosphorylation. In vivo, SlikCCD enhances cytoneme formation in one epithelial layer of the wing disc to promote cell proliferation in an adjacent layer. Finally, this function relies on the STRIPAK complex, which controls cytoneme formation and governs proliferation at a distance by regulating Slik association with the plasma membrane. Our study unveils an unexpected structural role of a kinase in sculpting membranes, crucial for cytoneme-mediated control of cell proliferation.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00401-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytonemes are signaling filopodia that facilitate long-range cell-cell communication by forming synapses between cells. Initially discovered in Drosophila for transporting morphogens during embryogenesis, they have since been identified in mammalian cells and implicated in carcinogenesis. Despite their importance, mechanisms controlling cytoneme biogenesis remain elusive. Here, we demonstrate that the Ser/Thr kinase Slik drives remote cell proliferation by promoting cytoneme formation. This function depends on the coiled-coil domain of Slik (SlikCCD), which directly sculpts membranes into tubules. Importantly, Slik plays opposing roles in cytoneme biogenesis: its membrane-sculpting activity promotes cytoneme formation, but this is counteracted by its kinase activity, which enhances actin association with the plasma membrane via Moesin phosphorylation. In vivo, SlikCCD enhances cytoneme formation in one epithelial layer of the wing disc to promote cell proliferation in an adjacent layer. Finally, this function relies on the STRIPAK complex, which controls cytoneme formation and governs proliferation at a distance by regulating Slik association with the plasma membrane. Our study unveils an unexpected structural role of a kinase in sculpting membranes, crucial for cytoneme-mediated control of cell proliferation.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.