A deep learning lightweight model for real-time captive macaque facial recognition based on an improved YOLOX model.

IF 4 1区 生物学 Q1 ZOOLOGY
Jia-Jin Zhang, Yu Gao, Bao-Lin Zhang, Dong-Dong Wu
{"title":"A deep learning lightweight model for real-time captive macaque facial recognition based on an improved YOLOX model.","authors":"Jia-Jin Zhang, Yu Gao, Bao-Lin Zhang, Dong-Dong Wu","doi":"10.24272/j.issn.2095-8137.2024.296","DOIUrl":null,"url":null,"abstract":"<p><p>Automated behavior monitoring of macaques offers transformative potential for advancing biomedical research and animal welfare. However, reliably identifying individual macaques in group environments remains a significant challenge. This study introduces ACE-YOLOX, a lightweight facial recognition model tailored for captive macaques. ACE-YOLOX incorporates Efficient Channel Attention (ECA), Complete Intersection over Union loss (CIoU), and Adaptive Spatial Feature Fusion (ASFF) into the YOLOX framework, enhancing prediction accuracy while reducing computational complexity. These integrated approaches enable effective multiscale feature extraction. Using a dataset comprising 179 400 labeled facial images from 1 196 macaques, ACE-YOLOX surpassed the performance of classical object detection models, demonstrating superior accuracy and real-time processing capabilities. An Android application was also developed to deploy ACE-YOLOX on smartphones, enabling on-device, real-time macaque recognition. Our experimental results highlight the potential of ACE-YOLOX as a non-invasive identification tool, offering an important foundation for future studies in macaque facial expression recognition, cognitive psychology, and social behavior.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 2","pages":"339-354"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000124/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.296","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated behavior monitoring of macaques offers transformative potential for advancing biomedical research and animal welfare. However, reliably identifying individual macaques in group environments remains a significant challenge. This study introduces ACE-YOLOX, a lightweight facial recognition model tailored for captive macaques. ACE-YOLOX incorporates Efficient Channel Attention (ECA), Complete Intersection over Union loss (CIoU), and Adaptive Spatial Feature Fusion (ASFF) into the YOLOX framework, enhancing prediction accuracy while reducing computational complexity. These integrated approaches enable effective multiscale feature extraction. Using a dataset comprising 179 400 labeled facial images from 1 196 macaques, ACE-YOLOX surpassed the performance of classical object detection models, demonstrating superior accuracy and real-time processing capabilities. An Android application was also developed to deploy ACE-YOLOX on smartphones, enabling on-device, real-time macaque recognition. Our experimental results highlight the potential of ACE-YOLOX as a non-invasive identification tool, offering an important foundation for future studies in macaque facial expression recognition, cognitive psychology, and social behavior.

基于改进YOLOX模型的实时圈养猕猴面部识别深度学习轻量级模型。
猕猴的自动行为监测为推进生物医学研究和动物福利提供了变革性的潜力。然而,在群体环境中可靠地识别单个猕猴仍然是一个重大挑战。本研究介绍了一种为圈养猕猴量身定制的轻量级面部识别模型ACE-YOLOX。ACE-YOLOX将高效通道注意(ECA)、完全交联损失(CIoU)和自适应空间特征融合(ASFF)融合到YOLOX框架中,提高了预测精度,同时降低了计算复杂度。这些综合方法实现了有效的多尺度特征提取。ACE-YOLOX使用了一个包含179 400张来自1 196只猕猴的标记面部图像的数据集,超越了经典目标检测模型的性能,展示了卓越的准确性和实时处理能力。他们还开发了一款Android应用程序,在智能手机上部署ACE-YOLOX,实现设备上的实时猕猴识别。我们的实验结果突出了ACE-YOLOX作为一种非侵入性识别工具的潜力,为未来猕猴面部表情识别、认知心理学和社会行为的研究提供了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信