Chao Liu, Wan-Ying Li, Le-Xuan Zheng, Mi Dao, Huan-Huan Chen, Li-Hong Han
{"title":"Comparative mitogenomic analysis reveals variations and evolution of ectomycorrhizal fungal <i>Strobilomyces</i>.","authors":"Chao Liu, Wan-Ying Li, Le-Xuan Zheng, Mi Dao, Huan-Huan Chen, Li-Hong Han","doi":"10.3897/imafungus.16.141848","DOIUrl":null,"url":null,"abstract":"<p><p>The genus <i>Strobilomyces</i>, representing a diverse and widespread group of ectomycorrhizal mushroom-forming fungi, plays a crucial ecological and economical role. However, until now, a comprehensive description of its mitochondrial genome (mitogenome) has been lacking. In our current study, we have successfully assembled and analysed the mitogenomes of five <i>Strobilomyces</i> species. These mitogenomes span a range from 35,618 base pairs (bp) to 42,088 bp, exhibiting a higher nucleotide abundance of AT compared to GC. All five mitogenomes harbour 14 conserved protein-coding genes (PCGs), two ribosomal RNAs (rRNAs) and 24 transfer RNAs (tRNAs). Notably, the overall ratio of Ka/Ks for all PCGs was found to be less than 1.0, indicating that these genes have undergone purifying selection during evolution. Intriguingly, the mitogenomic comparison revealed two instances of gene re-arrangement, which were directly linked to the geographical distribution of the <i>Strobilomyces</i> species. The concatenated mitochondrial PCGs (mtPCGs) and nuclear ribosomal DNA (nrDNA) phylogenies displayed a robust congruent topology at the family level. Specifically, the <i>Strobilomyces</i> species clustered together and formed sister relationship with other <i>Boletaceae</i> species in the mtPCGs tree. In contrast, the <i>Strobilomyces</i> species grouped at the base of the nrDNA tree when concerning <i>Boletaceae</i>. This study represents the first report on the mitogenomes of the <i>Strobilomyces</i> genus, providing valuable insights into fungal evolution within <i>Boletales</i>.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e141848"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/imafungus.16.141848","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genus Strobilomyces, representing a diverse and widespread group of ectomycorrhizal mushroom-forming fungi, plays a crucial ecological and economical role. However, until now, a comprehensive description of its mitochondrial genome (mitogenome) has been lacking. In our current study, we have successfully assembled and analysed the mitogenomes of five Strobilomyces species. These mitogenomes span a range from 35,618 base pairs (bp) to 42,088 bp, exhibiting a higher nucleotide abundance of AT compared to GC. All five mitogenomes harbour 14 conserved protein-coding genes (PCGs), two ribosomal RNAs (rRNAs) and 24 transfer RNAs (tRNAs). Notably, the overall ratio of Ka/Ks for all PCGs was found to be less than 1.0, indicating that these genes have undergone purifying selection during evolution. Intriguingly, the mitogenomic comparison revealed two instances of gene re-arrangement, which were directly linked to the geographical distribution of the Strobilomyces species. The concatenated mitochondrial PCGs (mtPCGs) and nuclear ribosomal DNA (nrDNA) phylogenies displayed a robust congruent topology at the family level. Specifically, the Strobilomyces species clustered together and formed sister relationship with other Boletaceae species in the mtPCGs tree. In contrast, the Strobilomyces species grouped at the base of the nrDNA tree when concerning Boletaceae. This study represents the first report on the mitogenomes of the Strobilomyces genus, providing valuable insights into fungal evolution within Boletales.
Ima FungusAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍:
The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue