Novel verbal instructions recruit abstract neural patterns of time-variable information dimensionality.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Paula Pena, Ana F Palenciano, Carlos González-García, María Ruz
{"title":"Novel verbal instructions recruit abstract neural patterns of time-variable information dimensionality.","authors":"Paula Pena, Ana F Palenciano, Carlos González-García, María Ruz","doi":"10.1523/JNEUROSCI.1964-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Human performance is endowed by neural representations of information that is relevant for behavior, some of which are also activated in a preparatory fashion to optimize later execution. Most studies to date have focused on highly practiced actions, leaving largely unaddressed the novel re-configuration of information to generate unique whole task-sets. Using electroencephalography (EEG), this study investigated the dynamics of the content and geometry reflected on the neural patterns of control representations during re-configuration of information. We designed a verbal instruction paradigm where each trial involved novel combinations of multi-component task information. By manipulating three task-relevant factors in a sample of 40 participants (26 females, 14 males), we observed complex coding schemes throughout the trial, during both preparation and implementation stages. The temporal profiles were consistent with a hierarchical structure: whereas task information was active in a sustained manner, the coding of more concrete stimulus features was more transient. Data showed both high dimensionality and abstraction, particularly during instruction encoding and target processing. Our results suggest that whenever task content could be recovered from neural patterns of activity, there was evidence of abstract coding, with an underlying geometry that favored generalization. During target processing, where potential interference across stimulus and response factors increased, orthogonal configurations also appeared. Overall, our findings uncover the dynamic manner with which control representations operate during novel recombination unique scenarios, with changes in dimensionality and abstraction adjusting along processing stages.<b>Significance Statement</b> The neural mechanisms that support task performance in novel contexts have been largely overlooked. Cognitive control is thought to enable complex behavior through the active maintenance of task sets, containing essential information for execution. However, how novel whole combinations of information are organized in neural patterns and their temporal dependencies remain unknown. Here, using a novel complex instruction paradigm, we observed that coding of informational content and its underlying geometry followed a dynamic temporal pattern. Our results reveal varying dimensionality and abstraction throughout the trial, with neural codes generally structured in a geometry favoring generalization of relevant information across task demands. These findings provide a first glimpse into the temporal computations engaged by the brain when encountering novel recombination settings.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1964-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Human performance is endowed by neural representations of information that is relevant for behavior, some of which are also activated in a preparatory fashion to optimize later execution. Most studies to date have focused on highly practiced actions, leaving largely unaddressed the novel re-configuration of information to generate unique whole task-sets. Using electroencephalography (EEG), this study investigated the dynamics of the content and geometry reflected on the neural patterns of control representations during re-configuration of information. We designed a verbal instruction paradigm where each trial involved novel combinations of multi-component task information. By manipulating three task-relevant factors in a sample of 40 participants (26 females, 14 males), we observed complex coding schemes throughout the trial, during both preparation and implementation stages. The temporal profiles were consistent with a hierarchical structure: whereas task information was active in a sustained manner, the coding of more concrete stimulus features was more transient. Data showed both high dimensionality and abstraction, particularly during instruction encoding and target processing. Our results suggest that whenever task content could be recovered from neural patterns of activity, there was evidence of abstract coding, with an underlying geometry that favored generalization. During target processing, where potential interference across stimulus and response factors increased, orthogonal configurations also appeared. Overall, our findings uncover the dynamic manner with which control representations operate during novel recombination unique scenarios, with changes in dimensionality and abstraction adjusting along processing stages.Significance Statement The neural mechanisms that support task performance in novel contexts have been largely overlooked. Cognitive control is thought to enable complex behavior through the active maintenance of task sets, containing essential information for execution. However, how novel whole combinations of information are organized in neural patterns and their temporal dependencies remain unknown. Here, using a novel complex instruction paradigm, we observed that coding of informational content and its underlying geometry followed a dynamic temporal pattern. Our results reveal varying dimensionality and abstraction throughout the trial, with neural codes generally structured in a geometry favoring generalization of relevant information across task demands. These findings provide a first glimpse into the temporal computations engaged by the brain when encountering novel recombination settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信