Stress-tolerant Bacillus strains for enhancing tomato growth and biocontrol of Fusarium oxysporum under saline conditions: functional and genomic characterization.
IF 4 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
María F Valencia-Marin, Salvador Chávez-Avila, Edgardo Sepúlveda, Carmen S Delgado-Ramírez, Jenny J Meza-Contreras, Ma Del Carmen Orozco-Mosqueda, Sergio De Los Santos-Villalobos, Olubukola Oluranti Babalola, Rufina Hernández-Martinez, Gustavo Santoyo
{"title":"Stress-tolerant Bacillus strains for enhancing tomato growth and biocontrol of Fusarium oxysporum under saline conditions: functional and genomic characterization.","authors":"María F Valencia-Marin, Salvador Chávez-Avila, Edgardo Sepúlveda, Carmen S Delgado-Ramírez, Jenny J Meza-Contreras, Ma Del Carmen Orozco-Mosqueda, Sergio De Los Santos-Villalobos, Olubukola Oluranti Babalola, Rufina Hernández-Martinez, Gustavo Santoyo","doi":"10.1007/s11274-025-04308-8","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinity is a major limiting factor for agricultural crops, which increases their susceptibility to pathogenic attacks. This is particularly relevant for tomato (Solanum lycopersicum), a salt-sensitive crop. Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, is a significant threat to tomato production in both greenhouse and field environments. This study evaluated the salinity tolerance, biocontrol, and plant growth-promoting properties of Bacillus velezensis AF12 and Bacillus halotolerans AF23, isolated from soil affected by underground fires and selected for their resistance to saline conditions (up to 1000 mM NaCl). In vitro assays confirmed that both strains produced siderophores, indole-3-acetic acid (IAA), and proteases and exhibited phosphate solubilization under saline stress (100-200 mM NaCl). AF23 exhibited synergistic interactions with AF12, and inoculation with either strain individually or in combination significantly improved the growth of the Bonny Best tomato cultivar under 200 mM saline stress, leading to increased shoot and root weight, enhanced chlorophyll content, and higher total biomass. The biocontrol potential of AF12 and AF23 was evaluated in tomato plants infected with F. oxysporum. Both strains, individually or combined, increased shoot and root weight, chlorophyll content, and total biomass under non-saline conditions, promoting growth and reducing infection rates under saline stress (100 mM NaCl). Genomic analysis revealed that both strains harbored genes related to salt stress tolerance, biocontrol, and plant growth promotion. In conclusion, Bacillus strains AF23 and AF12 demonstrated strong potential as bioinoculants for enhancing tomato growth and providing protection against F. oxysporum in saline-affected soils.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"96"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04308-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinity is a major limiting factor for agricultural crops, which increases their susceptibility to pathogenic attacks. This is particularly relevant for tomato (Solanum lycopersicum), a salt-sensitive crop. Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, is a significant threat to tomato production in both greenhouse and field environments. This study evaluated the salinity tolerance, biocontrol, and plant growth-promoting properties of Bacillus velezensis AF12 and Bacillus halotolerans AF23, isolated from soil affected by underground fires and selected for their resistance to saline conditions (up to 1000 mM NaCl). In vitro assays confirmed that both strains produced siderophores, indole-3-acetic acid (IAA), and proteases and exhibited phosphate solubilization under saline stress (100-200 mM NaCl). AF23 exhibited synergistic interactions with AF12, and inoculation with either strain individually or in combination significantly improved the growth of the Bonny Best tomato cultivar under 200 mM saline stress, leading to increased shoot and root weight, enhanced chlorophyll content, and higher total biomass. The biocontrol potential of AF12 and AF23 was evaluated in tomato plants infected with F. oxysporum. Both strains, individually or combined, increased shoot and root weight, chlorophyll content, and total biomass under non-saline conditions, promoting growth and reducing infection rates under saline stress (100 mM NaCl). Genomic analysis revealed that both strains harbored genes related to salt stress tolerance, biocontrol, and plant growth promotion. In conclusion, Bacillus strains AF23 and AF12 demonstrated strong potential as bioinoculants for enhancing tomato growth and providing protection against F. oxysporum in saline-affected soils.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.