{"title":"The root-derived syringic acid and shoot-to-root phytohormone signaling pathways play a critical role in preventing apple scab disease","authors":"Pratibha Demiwal , Parikshit Kumar Saini , Mukund Kumar , Partha Roy , Mahendra Kumar Verma , Javid Iqbal Mir , Debabrata Sircar","doi":"10.1016/j.plantsci.2025.112457","DOIUrl":null,"url":null,"abstract":"<div><div>Apple scab is a serious disease that has a huge economic impact. While some cultivars of apple are scab-resistant, most are not. Growing research has suggested that root-derived metabolites play a vital role in conferring resistance to aboveground pathogens through the long-distance signaling system between shoot and root. In this work, leaves of scab-resistant cultivar ‘Prima’ (PRM) and scab-susceptible cultivar 'Red Delicious' (RD) were challenged by <em>Venturia inaequalis</em>, and the resulting metabolic reprogramming in root tissues was monitored using gas chromatography-mass spectrometry-based metabolomics in time-course fashion. Metabolomics has revealed that scab fungus causes metabolic reprogramming in underground root tissue when above-ground parts (leaves) are infected. After scab infection in the above-ground leaf tissue, syringic acid is synthesized in the root tissue and transported from the root to the aerial part through vascular tissue. The increased level of reactive oxygen species and jasmonic acid (JA) across roots suggests a signaling pathway from infected leaves triggered by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In this study, it was found that leaf infection with scab produces H<sub>2</sub>O<sub>2</sub>. In aerial parts infected with scab, H<sub>2</sub>O<sub>2</sub> may act as a signaling molecule to trigger JA production. By travelling from the aerial part (shoot) to the root, H<sub>2</sub>O<sub>2</sub> and JA act as long-distance signaling molecules, stimulating magnesium uptake, and eventually enhancing phenylalanine ammonia-lyase (PAL) activity. A metabolic reprogramming of the root tissue is initiated by H<sub>2</sub>O<sub>2</sub>, JA and PAL activity. Root metabolic reprograming results in the formation of syringic acid, which travels from the roots to the aerial part through vascular tissue and helps fight scab fungal infections. The present study demonstrated that scab infection in apple leaves is associated with long distance signaling from shoot to root, in which root-derived specialized metabolites make their way to aerial parts and confer resistance to scab.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"355 ","pages":"Article 112457"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000755","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Apple scab is a serious disease that has a huge economic impact. While some cultivars of apple are scab-resistant, most are not. Growing research has suggested that root-derived metabolites play a vital role in conferring resistance to aboveground pathogens through the long-distance signaling system between shoot and root. In this work, leaves of scab-resistant cultivar ‘Prima’ (PRM) and scab-susceptible cultivar 'Red Delicious' (RD) were challenged by Venturia inaequalis, and the resulting metabolic reprogramming in root tissues was monitored using gas chromatography-mass spectrometry-based metabolomics in time-course fashion. Metabolomics has revealed that scab fungus causes metabolic reprogramming in underground root tissue when above-ground parts (leaves) are infected. After scab infection in the above-ground leaf tissue, syringic acid is synthesized in the root tissue and transported from the root to the aerial part through vascular tissue. The increased level of reactive oxygen species and jasmonic acid (JA) across roots suggests a signaling pathway from infected leaves triggered by hydrogen peroxide (H2O2). In this study, it was found that leaf infection with scab produces H2O2. In aerial parts infected with scab, H2O2 may act as a signaling molecule to trigger JA production. By travelling from the aerial part (shoot) to the root, H2O2 and JA act as long-distance signaling molecules, stimulating magnesium uptake, and eventually enhancing phenylalanine ammonia-lyase (PAL) activity. A metabolic reprogramming of the root tissue is initiated by H2O2, JA and PAL activity. Root metabolic reprograming results in the formation of syringic acid, which travels from the roots to the aerial part through vascular tissue and helps fight scab fungal infections. The present study demonstrated that scab infection in apple leaves is associated with long distance signaling from shoot to root, in which root-derived specialized metabolites make their way to aerial parts and confer resistance to scab.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.