Prediction of drug target interaction based on under sampling strategy and random forest algorithm.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-06 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318420
Feng Chen, Zhigang Zhao, Zheng Ren, Kun Lu, Yang Yu, Wenyan Wang
{"title":"Prediction of drug target interaction based on under sampling strategy and random forest algorithm.","authors":"Feng Chen, Zhigang Zhao, Zheng Ren, Kun Lu, Yang Yu, Wenyan Wang","doi":"10.1371/journal.pone.0318420","DOIUrl":null,"url":null,"abstract":"<p><p>Drug target interactions (DTIs) play a crucial role in drug discovery and development. The prediction of DTIs based on computational method can effectively assist the experimental techniques for DTIs identification, which are time-consuming and expensive. However, the current computational models suffer from low accuracy and high false positive rate in the prediction of DTIs, especially for datasets with extremely unbalanced sample categories. To accurately identify the interaction between drugs and target proteins, a variety of descriptors that fully show the characteristic information of drugs and targets are extracted and applied to the integrated method random forest (RF) in this work. Here, the random projection method is adopted to reduce the feature dimension such that simplify the model calculation. In addition, to balance the number of samples in different categories, a down sampling method NearMiss (NM) which can control the number of samples is used. Based on the gold standard datasets (nuclear receptors, ion channel, GPCRs and enzymes), the proposed method achieves the auROC of 92.26%, 98.21%, 97.65%, 99.33%, respectively. The experimental results show that the proposed method yields significantly higher performance than that of state-of-the-art methods in predicting drug target interaction.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0318420"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318420","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drug target interactions (DTIs) play a crucial role in drug discovery and development. The prediction of DTIs based on computational method can effectively assist the experimental techniques for DTIs identification, which are time-consuming and expensive. However, the current computational models suffer from low accuracy and high false positive rate in the prediction of DTIs, especially for datasets with extremely unbalanced sample categories. To accurately identify the interaction between drugs and target proteins, a variety of descriptors that fully show the characteristic information of drugs and targets are extracted and applied to the integrated method random forest (RF) in this work. Here, the random projection method is adopted to reduce the feature dimension such that simplify the model calculation. In addition, to balance the number of samples in different categories, a down sampling method NearMiss (NM) which can control the number of samples is used. Based on the gold standard datasets (nuclear receptors, ion channel, GPCRs and enzymes), the proposed method achieves the auROC of 92.26%, 98.21%, 97.65%, 99.33%, respectively. The experimental results show that the proposed method yields significantly higher performance than that of state-of-the-art methods in predicting drug target interaction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信