{"title":"Lactobacillus plantarum fermented barley extract attenuates obesity in HFD-induced obese rats by regulating gut microbiota.","authors":"Ruirong Pan, Tingwei Wang, Juan Bai, Jiayan Zhang, Yaoguang Gu, Zhicong Zhao, Ruixue Tang, Zifan Qian, Lirong Yan, Xiang Xiao, Shuang Liang, Ying Dong","doi":"10.1002/lipd.12435","DOIUrl":null,"url":null,"abstract":"<p><p>Lactobacillus plantarum fermented barley extract (LFBE) has a potent anti-obesity effect on high-fat-diet fed (HFD) obese rats. However, the underlying mechanism remains unclear. Herein, we investigated the anti-obesity effect and mechanism of LFBE in 3 T3-L1 preadipocytes and HFD-induced obese rats. LFBE significantly inhibited lipid accumulation by decreasing the expression of adipogenesis-related transcription factors, including peroxisome proliferator-activated receptor (PPAR-γ) and CCAAT/enhancer binding protein (C/EBP-α) in differentiated 3 T3-L1 cells. The expression levels of adiponectin, acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS) were also suppressed in differentiated three T3-L1 cells. Administration of LFBE significantly reduced insulin resistance, blood lipid profiles, and improved metabolic hormones in HFD-induced obese rats. Furthermore, the serum pro-inflammatory cytokines including CRP, IL-6, TNFα, and INFγ in HFD-induced obese rats were significantly decreased after LFBE administration. LFBE treatment also attenuated oxidative stress in HFD-induced obese rats by decreasing MDA production and restoring SOD and catalase enzymatic activity. Administration of LFBE could modulate gut microbiota imbalance by increasing the abundance of Lactobacillus and Ruminococcaceae UCG-014 and decreasing Prevotella-9 at the genus level and restoring intestinal barrier dysfunction in HFD-induced obesity rats. Taken together, our study indicated that LFBE is a promising candidate for treating obesity through multiple mechanisms.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/lipd.12435","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactobacillus plantarum fermented barley extract (LFBE) has a potent anti-obesity effect on high-fat-diet fed (HFD) obese rats. However, the underlying mechanism remains unclear. Herein, we investigated the anti-obesity effect and mechanism of LFBE in 3 T3-L1 preadipocytes and HFD-induced obese rats. LFBE significantly inhibited lipid accumulation by decreasing the expression of adipogenesis-related transcription factors, including peroxisome proliferator-activated receptor (PPAR-γ) and CCAAT/enhancer binding protein (C/EBP-α) in differentiated 3 T3-L1 cells. The expression levels of adiponectin, acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS) were also suppressed in differentiated three T3-L1 cells. Administration of LFBE significantly reduced insulin resistance, blood lipid profiles, and improved metabolic hormones in HFD-induced obese rats. Furthermore, the serum pro-inflammatory cytokines including CRP, IL-6, TNFα, and INFγ in HFD-induced obese rats were significantly decreased after LFBE administration. LFBE treatment also attenuated oxidative stress in HFD-induced obese rats by decreasing MDA production and restoring SOD and catalase enzymatic activity. Administration of LFBE could modulate gut microbiota imbalance by increasing the abundance of Lactobacillus and Ruminococcaceae UCG-014 and decreasing Prevotella-9 at the genus level and restoring intestinal barrier dysfunction in HFD-induced obesity rats. Taken together, our study indicated that LFBE is a promising candidate for treating obesity through multiple mechanisms.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.