Kinga Réka Tasnády, Reindert Jehoul, Manuel Gutiérrez de Ravé, Marion J Gijbels, Bert Brône, Ilse Dewachter, Veerle Melotte, Werend Boesmans
{"title":"Gastrointestinal Dysfunction and Low-Grade Inflammation Associate With Enteric Neuronal Amyloid-β in a Model for Amyloid Pathology.","authors":"Kinga Réka Tasnády, Reindert Jehoul, Manuel Gutiérrez de Ravé, Marion J Gijbels, Bert Brône, Ilse Dewachter, Veerle Melotte, Werend Boesmans","doi":"10.1111/nmo.15016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients suffering from Alzheimer's disease, a progressive neurodegenerative disorder involving cognitive decline and memory impairment, often present with gastrointestinal comorbidities. Accumulating data also indicate that alterations in the gut can modulate Alzheimer's disease pathology, highlighting the need to better understand the link between gastrointestinal abnormalities and neurodegeneration in the brain.</p><p><strong>Methods: </strong>To disentangle the pathophysiology of gastrointestinal dysfunction in Alzheimer's disease, we conducted a detailed pathological characterization of the gastrointestinal tract of 5xFAD mice by performing histological analyses, gene expression studies, immunofluorescence labeling and gut function assays.</p><p><strong>Results: </strong>We found that 5xFAD mice have elevated levels of intestinal amyloid precursor protein and accumulate amyloid-β in enteric neurons. Histopathology revealed that this is associated with mild intestinal inflammation and fibrosis and accompanied by increased expression of proinflammatory cytokines. While overall enteric nervous system composition and organization appeared unaffected, 5xFAD mice have faster gastrointestinal transit.</p><p><strong>Conclusion: </strong>Our findings indicate that amyloid-β accumulation in enteric neurons is associated with low-grade intestinal inflammation and altered motility and suggest that peripheral pathology may cause gastrointestinal dysfunction in Alzheimer's disease patients.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e15016"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.15016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patients suffering from Alzheimer's disease, a progressive neurodegenerative disorder involving cognitive decline and memory impairment, often present with gastrointestinal comorbidities. Accumulating data also indicate that alterations in the gut can modulate Alzheimer's disease pathology, highlighting the need to better understand the link between gastrointestinal abnormalities and neurodegeneration in the brain.
Methods: To disentangle the pathophysiology of gastrointestinal dysfunction in Alzheimer's disease, we conducted a detailed pathological characterization of the gastrointestinal tract of 5xFAD mice by performing histological analyses, gene expression studies, immunofluorescence labeling and gut function assays.
Results: We found that 5xFAD mice have elevated levels of intestinal amyloid precursor protein and accumulate amyloid-β in enteric neurons. Histopathology revealed that this is associated with mild intestinal inflammation and fibrosis and accompanied by increased expression of proinflammatory cytokines. While overall enteric nervous system composition and organization appeared unaffected, 5xFAD mice have faster gastrointestinal transit.
Conclusion: Our findings indicate that amyloid-β accumulation in enteric neurons is associated with low-grade intestinal inflammation and altered motility and suggest that peripheral pathology may cause gastrointestinal dysfunction in Alzheimer's disease patients.
期刊介绍:
Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.