N‑methyladenosine reader YTHDF2‑mediated AC026691.1 degradation promotes gastric cancer cell proliferation, migration and M2 macrophage polarization.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-05-01 Epub Date: 2025-03-07 DOI:10.3892/mmr.2025.13485
Cong-Fei Ji, Jin-Feng Ji, Xiao-Bing Yu, Zhen-Xin Wang
{"title":"N‑methyladenosine reader YTHDF2‑mediated AC026691.1 degradation promotes gastric cancer cell proliferation, migration and M2 macrophage polarization.","authors":"Cong-Fei Ji, Jin-Feng Ji, Xiao-Bing Yu, Zhen-Xin Wang","doi":"10.3892/mmr.2025.13485","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to explore the effects of key N6‑methyladenosine (m6A)‑related long non‑coding RNAs (lncRNAs) on the malignant behavior and macrophage polarization of gastric cancer cells, and their preliminary mechanisms. Gastric cancer‑related lncRNA datasets were downloaded from The Cancer Genome Atlas database, and m6A‑related differentially expressed lncRNAs (DElncRNAs) were analyzed. Subsequently, Cox regression and lasso regression analyses were used to screen the m6A‑related DElncRNAs associated with the prognosis of patients with gastric cancer. Additionally, reverse transcription‑quantitative polymerase chain reaction (qPCR) was employed to detect the expression levels of m6A‑related lncRNAs in normal gastric epithelial cells (GES‑1) and human gastric cancer cells (AGS and MKN‑45). In addition, the methylation levels of lncRNAs were measured using a methylated RNA immunoprecipitation qPCR assay kit, and the interaction between m6A‑related lncRNAs and m6A‑related proteins was observed by RNA pull‑down assay. Subsequently, m6A‑related lncRNAs and proteins were knocked down separately or simultaneously in gastric cancer cell lines. Bioinformatics analysis revealed that m6A‑related AC026691.1 was significantly associated with the prognosis of patients with gastric cancer and had a potential binding site for YT521‑B homology domain family member 2 (YTHDF2). The RNA pull‑down assay indicated that YTHDF2 not only had binding sites with AC026691.1 but could also markedly promote the degradation of m6A‑related AC026691.1. Furthermore, AC026691.1 was lowly expressed in gastric cancer cells, whereas YTHDF2 was highly expressed. Knockdown of YTHDF2 inhibited the proliferation, migration and epithelial‑mesenchymal transition of gastric cancer cells, and reduced M2 macrophage polarization. By contrast, knocking down AC026691.1 showed the opposite trend. Knockdown of YTHDF2 and AC026691.1 further confirmed the stable impact of YTHDF2 on AC026691.1. In conclusion, the degradation of AC026691.1 modified by YTHDF2‑mediated m6A may promote gastric cancer cell proliferation, migration, epithelial‑mesenchymal transition and M2 macrophage polarization.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13485","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aimed to explore the effects of key N6‑methyladenosine (m6A)‑related long non‑coding RNAs (lncRNAs) on the malignant behavior and macrophage polarization of gastric cancer cells, and their preliminary mechanisms. Gastric cancer‑related lncRNA datasets were downloaded from The Cancer Genome Atlas database, and m6A‑related differentially expressed lncRNAs (DElncRNAs) were analyzed. Subsequently, Cox regression and lasso regression analyses were used to screen the m6A‑related DElncRNAs associated with the prognosis of patients with gastric cancer. Additionally, reverse transcription‑quantitative polymerase chain reaction (qPCR) was employed to detect the expression levels of m6A‑related lncRNAs in normal gastric epithelial cells (GES‑1) and human gastric cancer cells (AGS and MKN‑45). In addition, the methylation levels of lncRNAs were measured using a methylated RNA immunoprecipitation qPCR assay kit, and the interaction between m6A‑related lncRNAs and m6A‑related proteins was observed by RNA pull‑down assay. Subsequently, m6A‑related lncRNAs and proteins were knocked down separately or simultaneously in gastric cancer cell lines. Bioinformatics analysis revealed that m6A‑related AC026691.1 was significantly associated with the prognosis of patients with gastric cancer and had a potential binding site for YT521‑B homology domain family member 2 (YTHDF2). The RNA pull‑down assay indicated that YTHDF2 not only had binding sites with AC026691.1 but could also markedly promote the degradation of m6A‑related AC026691.1. Furthermore, AC026691.1 was lowly expressed in gastric cancer cells, whereas YTHDF2 was highly expressed. Knockdown of YTHDF2 inhibited the proliferation, migration and epithelial‑mesenchymal transition of gastric cancer cells, and reduced M2 macrophage polarization. By contrast, knocking down AC026691.1 showed the opposite trend. Knockdown of YTHDF2 and AC026691.1 further confirmed the stable impact of YTHDF2 on AC026691.1. In conclusion, the degradation of AC026691.1 modified by YTHDF2‑mediated m6A may promote gastric cancer cell proliferation, migration, epithelial‑mesenchymal transition and M2 macrophage polarization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信