Yukio Cho, Giulio D'Acunto, Jagjit Nanda, Stacey F Bent
{"title":"Atomic and molecular layer deposition on unconventional substrates: challenges and perspectives from energy applications.","authors":"Yukio Cho, Giulio D'Acunto, Jagjit Nanda, Stacey F Bent","doi":"10.1088/1361-6528/adbd49","DOIUrl":null,"url":null,"abstract":"<p><p>The use of atomic layer deposition (ALD) and molecular layer deposition (MLD) in energy sectors such as catalysis, batteries, and membranes has emerged as a growing approach to fine-tune surface and interfacial properties at the nanoscale, thereby enhancing performance. However, compared to the microelectronics field where ALD is well established on conventional substrates such as silicon wafers, employing ALD and MLD in energy applications often requires depositing films on unconventional substrates such as nanoparticles, secondary particles, composite electrodes, membranes with a wide pore size distribution, and two-dimensional materials. This review examines the challenges and perspectives associated with implementing ALD and MLD on these unconventional substrates. We discuss how the complex surface chemistries and intricate morphologies of these substrates can lead to non-ideal growth behaviors, resulting in inconsistent film properties compared to those grown on standard wafers, even within the same deposition process. Additionally, the review outlines the strengths and limitations of several characterization techniques when employed for ALD or MLD films grown on unconventional substrates, and it highlights a few example studies in which these growth methods have been applied for energy applications with a focus on energy storage. With ALD and MLD continuing to gain attention, this review aims to deepen the understanding of how to achieve controllable, predictable, and scalable deposition with atomic-scale precision, ultimately advancing the development of more efficient and durable energy devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adbd49","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of atomic layer deposition (ALD) and molecular layer deposition (MLD) in energy sectors such as catalysis, batteries, and membranes has emerged as a growing approach to fine-tune surface and interfacial properties at the nanoscale, thereby enhancing performance. However, compared to the microelectronics field where ALD is well established on conventional substrates such as silicon wafers, employing ALD and MLD in energy applications often requires depositing films on unconventional substrates such as nanoparticles, secondary particles, composite electrodes, membranes with a wide pore size distribution, and two-dimensional materials. This review examines the challenges and perspectives associated with implementing ALD and MLD on these unconventional substrates. We discuss how the complex surface chemistries and intricate morphologies of these substrates can lead to non-ideal growth behaviors, resulting in inconsistent film properties compared to those grown on standard wafers, even within the same deposition process. Additionally, the review outlines the strengths and limitations of several characterization techniques when employed for ALD or MLD films grown on unconventional substrates, and it highlights a few example studies in which these growth methods have been applied for energy applications with a focus on energy storage. With ALD and MLD continuing to gain attention, this review aims to deepen the understanding of how to achieve controllable, predictable, and scalable deposition with atomic-scale precision, ultimately advancing the development of more efficient and durable energy devices.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.