Glycoprotein 130 improves repressor element‑1 silencing transcription factor‑related axon regenerative capacity in peripheral nerves with aging.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-05-01 Epub Date: 2025-03-07 DOI:10.3892/mmr.2025.13486
So Kawakita, Kiyohito Naito, Daisuke Kubota, Yuji Ueno, Takako Negishi-Koga, Yasuhiro Yamamoto, Takamaru Suzuki, Norizumi Imazu, Kenjiro Kawamura, Nobutaka Hattori, Muneaki Ishijima
{"title":"Glycoprotein 130 improves repressor element‑1 silencing transcription factor‑related axon regenerative capacity in peripheral nerves with aging.","authors":"So Kawakita, Kiyohito Naito, Daisuke Kubota, Yuji Ueno, Takako Negishi-Koga, Yasuhiro Yamamoto, Takamaru Suzuki, Norizumi Imazu, Kenjiro Kawamura, Nobutaka Hattori, Muneaki Ishijima","doi":"10.3892/mmr.2025.13486","DOIUrl":null,"url":null,"abstract":"<p><p>Axon regenerative capacity diminishes with aging and differences in the condition of peripheral nerves between young and elderly individuals have been reported. However, the underlying pathology remains unclear. The expression of repressor element‑1 silencing transcription factor (REST) increases with age and is reported to suppress axon regeneration. The present study investigated the pathology and potential treatment of reduced axon regenerative capacity using REST‑regulated cells and a mouse model. This study examined the molecular expression of the janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) pathway, which is involved in growth‑associated protein 43 (GAP43) expression. In REST‑overexpressed (REST‑OE), glycoprotein 130 (GP130), JAK1 and phosphorylated STAT3 (p‑STAT3) expression was decreased compared with the control (GP130, P=0.004; JAK1, P=0.038; pSTAT3, P=0.015). On the other hand, in REST‑low expressed (siREST), GP130, JAK1 and pSTAT3 expression was increased compared with the control (GP130, P=0.004; JAK1, P=0.003; pSTAT3, P=0.033). It suggested that GP130 plays an important role. Therefore, GP130 agonist was administered to REST‑OE and aged mice and resulted in a significant increase in GAP43 expression (REST‑OE: Protein P=0.018, mRNA P=0.040; aged mice: Protein P=0.016, mRNA P=0.013). The results of this study suggest that the pathology of reduction in peripheral nerve axon regenerative capacity is inhibited by age‑related increase in REST expression, which leads to decreased GP130 expression and inhibition of JAK1/STAT3 pathway activity. These findings suggest that regulating GP130 expression may improve axon regenerative capacity by aging.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13486","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Axon regenerative capacity diminishes with aging and differences in the condition of peripheral nerves between young and elderly individuals have been reported. However, the underlying pathology remains unclear. The expression of repressor element‑1 silencing transcription factor (REST) increases with age and is reported to suppress axon regeneration. The present study investigated the pathology and potential treatment of reduced axon regenerative capacity using REST‑regulated cells and a mouse model. This study examined the molecular expression of the janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) pathway, which is involved in growth‑associated protein 43 (GAP43) expression. In REST‑overexpressed (REST‑OE), glycoprotein 130 (GP130), JAK1 and phosphorylated STAT3 (p‑STAT3) expression was decreased compared with the control (GP130, P=0.004; JAK1, P=0.038; pSTAT3, P=0.015). On the other hand, in REST‑low expressed (siREST), GP130, JAK1 and pSTAT3 expression was increased compared with the control (GP130, P=0.004; JAK1, P=0.003; pSTAT3, P=0.033). It suggested that GP130 plays an important role. Therefore, GP130 agonist was administered to REST‑OE and aged mice and resulted in a significant increase in GAP43 expression (REST‑OE: Protein P=0.018, mRNA P=0.040; aged mice: Protein P=0.016, mRNA P=0.013). The results of this study suggest that the pathology of reduction in peripheral nerve axon regenerative capacity is inhibited by age‑related increase in REST expression, which leads to decreased GP130 expression and inhibition of JAK1/STAT3 pathway activity. These findings suggest that regulating GP130 expression may improve axon regenerative capacity by aging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信