Effect of fieldwork-friendly coffee blender-based extraction methods and leaf tissue storage on the transcriptome of non-model plants.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Shine-Undarga Dagva, Josephine Galipon
{"title":"Effect of fieldwork-friendly coffee blender-based extraction methods and leaf tissue storage on the transcriptome of non-model plants.","authors":"Shine-Undarga Dagva, Josephine Galipon","doi":"10.1007/s10265-025-01624-w","DOIUrl":null,"url":null,"abstract":"<p><p>The adaptation of plants to environmental conditions involves a transcriptional response. \"Field transcriptomics\" is an emerging concept for studying plants in their natural habitat. However, this term includes studies in which cold storage was possible until further processing in a laboratory. Previous studies proposing onsite RNA extraction methods are limited to descriptions of RNA purity, quantity, and quality, and lack a thorough evaluation of transcriptome quality, and transcriptomic evaluations of RNA storage solutions in plants are, to our knowledge, only available for periods of less than a day. This issue is critical for studying plants in geographically difficult-to-access regions, where keeping the cold chain is unrealistic. In this study, the transcriptome of the non-model plant Helonias orientalis (order: Liliales) was evaluated before and after storage of the leaf tissue for one and fourteen days at 25 °C in RNAlater and TRIzol, respectively. Additionally, field-friendly protocols were similarly evaluated for onsite plant RNA extraction at ambient temperature with lightweight equipment that can run on a portable generator, including a guanidine isothiocyanate-free protocol that is compatible with the polyphenol-rich wild strawberry Fragaria vesca. The quality of the transcriptome assembly after 1-day storage and our optimized onsite methods had similar results to that of the state-of-the-art. However, in terms of differential expression analysis, onsite extraction methods performed better overall than the stored tissue samples. We expect that our onsite RNA extraction methods will provide valuable insights into the transcriptional regulation of plants in areas where research equipment is difficult to access.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01624-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The adaptation of plants to environmental conditions involves a transcriptional response. "Field transcriptomics" is an emerging concept for studying plants in their natural habitat. However, this term includes studies in which cold storage was possible until further processing in a laboratory. Previous studies proposing onsite RNA extraction methods are limited to descriptions of RNA purity, quantity, and quality, and lack a thorough evaluation of transcriptome quality, and transcriptomic evaluations of RNA storage solutions in plants are, to our knowledge, only available for periods of less than a day. This issue is critical for studying plants in geographically difficult-to-access regions, where keeping the cold chain is unrealistic. In this study, the transcriptome of the non-model plant Helonias orientalis (order: Liliales) was evaluated before and after storage of the leaf tissue for one and fourteen days at 25 °C in RNAlater and TRIzol, respectively. Additionally, field-friendly protocols were similarly evaluated for onsite plant RNA extraction at ambient temperature with lightweight equipment that can run on a portable generator, including a guanidine isothiocyanate-free protocol that is compatible with the polyphenol-rich wild strawberry Fragaria vesca. The quality of the transcriptome assembly after 1-day storage and our optimized onsite methods had similar results to that of the state-of-the-art. However, in terms of differential expression analysis, onsite extraction methods performed better overall than the stored tissue samples. We expect that our onsite RNA extraction methods will provide valuable insights into the transcriptional regulation of plants in areas where research equipment is difficult to access.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信