Young Seon Shin, Danielle Christensen, Jingying Wang, Desirae J Shirley, Ann-Marie Orlando, Regilda A Romero, David E Vaillancourt, Bradley J Wilkes, Stephen A Coombes, Zheng Wang
{"title":"Transcallosal white matter and cortical gray matter variations in autistic adults aged 30-73 years.","authors":"Young Seon Shin, Danielle Christensen, Jingying Wang, Desirae J Shirley, Ann-Marie Orlando, Regilda A Romero, David E Vaillancourt, Bradley J Wilkes, Stephen A Coombes, Zheng Wang","doi":"10.1186/s13229-025-00652-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) is a lifelong condition that profoundly impacts health, independence, and quality of life. However, research on brain aging in autistic adults is limited, and microstructural variations in white and gray matter remain poorly understood. To address this critical gap, we assessed novel diffusion MRI (dMRI) biomarkers, free water, and free water corrected fractional anisotropy (fwcFA), and mean diffusivity (fwcMD) across 32 transcallosal tracts and their corresponding homotopic grey matter origin/endpoint regions of interest (ROIs) in middle and old aged autistic adults.</p><p><strong>Methods: </strong>Forty-three autistic adults aged 30-73 and 43 age-, sex-, and IQ-matched neurotypical controls underwent dMRI scans. We examined free water, fwcFA, fwcMD differences between the two groups and age-related pattern of each dMRI metric across the whole brain for each group. The relationships between clinical measures of ASD and free water in regions that significantly differentiated autistic adults from neurotypical controls were also explored. In supplementary analyses, we also assessed free water uncorrected FA and MD using conventional single tensor modeling.</p><p><strong>Results: </strong>Autistic adults exhibited significantly elevated free water in seven frontal transcallosal tracts compared to controls. In controls, age-related increases in free water and decreases in fwcFA were observed across most transcallosal tracts. However, these age-associated patterns were entirely absent in autistic adults. In gray matter, autistic adults showed elevated free water in the calcarine cortices and lower fwcMD in the dorsal premotor cortices compared to controls. Lastly, age-related increases in free water were found across all white matter and gray matter ROIs in neurotypical controls, whereas no age-related associations were detected in any dMRI metrics for autistic adults.</p><p><strong>Limitations: </strong>We only recruited cognitively capable autistic adults, which limits the generalizability of our findings across the full autism spectrum. The cross-sectional design precludes inferences about microstructural changes over time in middle and old aged autistic adults.</p><p><strong>Conclusions: </strong>Our findings revealed increased free water load in frontal white matter in autistic adults and identified distinct age-associated microstructural variations between the two groups. These findings highlight more heterogeneous brain aging profiles in autistic adults. Our study also demonstrated the importance of quantifying free water in dMRI studies of ASD.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"16 1","pages":"16"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-025-00652-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autism spectrum disorder (ASD) is a lifelong condition that profoundly impacts health, independence, and quality of life. However, research on brain aging in autistic adults is limited, and microstructural variations in white and gray matter remain poorly understood. To address this critical gap, we assessed novel diffusion MRI (dMRI) biomarkers, free water, and free water corrected fractional anisotropy (fwcFA), and mean diffusivity (fwcMD) across 32 transcallosal tracts and their corresponding homotopic grey matter origin/endpoint regions of interest (ROIs) in middle and old aged autistic adults.
Methods: Forty-three autistic adults aged 30-73 and 43 age-, sex-, and IQ-matched neurotypical controls underwent dMRI scans. We examined free water, fwcFA, fwcMD differences between the two groups and age-related pattern of each dMRI metric across the whole brain for each group. The relationships between clinical measures of ASD and free water in regions that significantly differentiated autistic adults from neurotypical controls were also explored. In supplementary analyses, we also assessed free water uncorrected FA and MD using conventional single tensor modeling.
Results: Autistic adults exhibited significantly elevated free water in seven frontal transcallosal tracts compared to controls. In controls, age-related increases in free water and decreases in fwcFA were observed across most transcallosal tracts. However, these age-associated patterns were entirely absent in autistic adults. In gray matter, autistic adults showed elevated free water in the calcarine cortices and lower fwcMD in the dorsal premotor cortices compared to controls. Lastly, age-related increases in free water were found across all white matter and gray matter ROIs in neurotypical controls, whereas no age-related associations were detected in any dMRI metrics for autistic adults.
Limitations: We only recruited cognitively capable autistic adults, which limits the generalizability of our findings across the full autism spectrum. The cross-sectional design precludes inferences about microstructural changes over time in middle and old aged autistic adults.
Conclusions: Our findings revealed increased free water load in frontal white matter in autistic adults and identified distinct age-associated microstructural variations between the two groups. These findings highlight more heterogeneous brain aging profiles in autistic adults. Our study also demonstrated the importance of quantifying free water in dMRI studies of ASD.
期刊介绍:
Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.