Unveiling ac4C modification pattern: a prospective target for improving the response to immunotherapeutic strategies in melanoma.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jianlan Liu, Pengpeng Zhang, Chaoqin Wu, Binlin Luo, Xiaojian Cao, Jian Tang
{"title":"Unveiling ac4C modification pattern: a prospective target for improving the response to immunotherapeutic strategies in melanoma.","authors":"Jianlan Liu, Pengpeng Zhang, Chaoqin Wu, Binlin Luo, Xiaojian Cao, Jian Tang","doi":"10.1186/s12967-025-06297-6","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence has confirmed the inextricable connection between N4-acetylcytidine (ac4C) mRNA modification and the clinical characteristics of malignancies. Nonetheless, it is uncertain whether and how ac4C mRNA modification patterns affect clinical outcomes in melanoma patients. This research integrated single-cell sequencing data and transcriptomics to pinpoint ac4C-related genes (acRG) linked to melanoma progression and evaluate their clinical implications. Cells with elevated acRG score were predominantly located within the melanocytes cluster. Intercellular communications between melanocytes and other cell subtypes were markedly strengthened in the acRG-high group. We developed and confirmed an excellent acRG-related signature (acRGS) utilizing a comprehensive set of 101 algorithm combinations derived from 10 machine learning algorithms. Hereby, the acRGS, including MYO10, ZNF667, MRAS, SCO2, MAPK10, PNMA6A, KPNA2, NT5DC2, BAIAP2L2 and NDST3, delineated ac4C-associated mRNA modification patterns in melanoma. The acRGS possesses distinctly superior performance to 120 previously reported signatures in melanoma and could predict the overall survival of melanoma patients across four external datasets. The substantial associations among immune checkpoint genes, immune cell infiltration, and tumor mutation burden with acRGS indicate that acRGS is helpful in identifying melanoma patients who are sensitive to immunotherapy. Besides, we confirmed that MYO10 was mainly overexpressed in melanoma tissues, and elevated MYO10 was positively correlated with malignant phenotypes and unfavorable prognosis in melanoma patients. Silencing MYO10 expression inhibited melanoma cell proliferation, migration and invasion in vitro as well as tumor growth in vivo. Taken together, the acRGS could function as a reliable and prospective tool to improve the clinical prognosis for melanoma individuals.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"287"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06297-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence has confirmed the inextricable connection between N4-acetylcytidine (ac4C) mRNA modification and the clinical characteristics of malignancies. Nonetheless, it is uncertain whether and how ac4C mRNA modification patterns affect clinical outcomes in melanoma patients. This research integrated single-cell sequencing data and transcriptomics to pinpoint ac4C-related genes (acRG) linked to melanoma progression and evaluate their clinical implications. Cells with elevated acRG score were predominantly located within the melanocytes cluster. Intercellular communications between melanocytes and other cell subtypes were markedly strengthened in the acRG-high group. We developed and confirmed an excellent acRG-related signature (acRGS) utilizing a comprehensive set of 101 algorithm combinations derived from 10 machine learning algorithms. Hereby, the acRGS, including MYO10, ZNF667, MRAS, SCO2, MAPK10, PNMA6A, KPNA2, NT5DC2, BAIAP2L2 and NDST3, delineated ac4C-associated mRNA modification patterns in melanoma. The acRGS possesses distinctly superior performance to 120 previously reported signatures in melanoma and could predict the overall survival of melanoma patients across four external datasets. The substantial associations among immune checkpoint genes, immune cell infiltration, and tumor mutation burden with acRGS indicate that acRGS is helpful in identifying melanoma patients who are sensitive to immunotherapy. Besides, we confirmed that MYO10 was mainly overexpressed in melanoma tissues, and elevated MYO10 was positively correlated with malignant phenotypes and unfavorable prognosis in melanoma patients. Silencing MYO10 expression inhibited melanoma cell proliferation, migration and invasion in vitro as well as tumor growth in vivo. Taken together, the acRGS could function as a reliable and prospective tool to improve the clinical prognosis for melanoma individuals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信