Sivashanmuga Vadivel Saranya, R Prathiviraj, Paulchamy Chellapandi
{"title":"Mobilome-Mediated Speciation: Genomic Insights Into Horizontal Gene Transfer in Methanosarcina.","authors":"Sivashanmuga Vadivel Saranya, R Prathiviraj, Paulchamy Chellapandi","doi":"10.1002/jobm.70013","DOIUrl":null,"url":null,"abstract":"<p><p>Speciation in prokaryotes is often driven by complex genetic exchanges such as horizontal gene transfer (HGT), which facilitates genomic divergence and adaptation. In this study, we inferred the evolutionary transitions of the mobilome (plasmids, transposons, and phages) between Methanosarcina and bacteria in driving speciation within the Methanosarcina genus. By conducting evolutionary and phylogenetic analyses of Methanosarcina acetivorans, M. barkeri, M. mazei, and M. siciliae, we identified key mobilome elements acquired through HGT from distantly related bacterial species. These mobile genetic elements have shaped genomic plasticity, enabling Methanosarcina to adapt to diverse environmental niches and potentially facilitating lineage divergence. The acquisition of mobilome-associated genes involved in antibiotic resistance, DNA repair, and stress responses suggests their significant role in the ecological speciation of Methanosarcina. Overall, we hypothesized that their mobile genetic element might have been acquired from distantly related bacteria by HGT and subsequently established as new functional homologs in the present lineage. This study provides insight into how mobilome-mediated gene flow contributes to genomic divergence and speciation within microbial populations, highlighting the broader significance of mobilome in microbial evolution and speciation processes.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70013"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Speciation in prokaryotes is often driven by complex genetic exchanges such as horizontal gene transfer (HGT), which facilitates genomic divergence and adaptation. In this study, we inferred the evolutionary transitions of the mobilome (plasmids, transposons, and phages) between Methanosarcina and bacteria in driving speciation within the Methanosarcina genus. By conducting evolutionary and phylogenetic analyses of Methanosarcina acetivorans, M. barkeri, M. mazei, and M. siciliae, we identified key mobilome elements acquired through HGT from distantly related bacterial species. These mobile genetic elements have shaped genomic plasticity, enabling Methanosarcina to adapt to diverse environmental niches and potentially facilitating lineage divergence. The acquisition of mobilome-associated genes involved in antibiotic resistance, DNA repair, and stress responses suggests their significant role in the ecological speciation of Methanosarcina. Overall, we hypothesized that their mobile genetic element might have been acquired from distantly related bacteria by HGT and subsequently established as new functional homologs in the present lineage. This study provides insight into how mobilome-mediated gene flow contributes to genomic divergence and speciation within microbial populations, highlighting the broader significance of mobilome in microbial evolution and speciation processes.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).