Diaphragm Blood Flow: New Avenues for Human Translation.

IF 3.3 3区 医学 Q1 PHYSIOLOGY
Jordan D Bird, Megan L Lance, Damien Bachasson, Paolo B Dominelli, Glen E Foster
{"title":"Diaphragm Blood Flow: New Avenues for Human Translation.","authors":"Jordan D Bird, Megan L Lance, Damien Bachasson, Paolo B Dominelli, Glen E Foster","doi":"10.1152/japplphysiol.00669.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The rhythmic contraction of the diaphragm facilitates continuous pulmonary ventilation essential for life. Adequate blood flow to the diaphragm is critical to continuously support contractile function, as an imbalance in nutritive supply and demand can lead to diaphragm insufficiency, patient morbidity and mortality. Given oxygen supply to the diaphragm is key to its function, it is no surprise that more than 200 animal studies have investigated diaphragm blood flow (Q̇<sub>DIA</sub>) regulation over the past century. This work has advanced our understanding of the diaphragm's circulatory control (<i>i.e.</i>, regional blood flow heterogeneity, mechanical impediment) and response to a variety of conditions, including eupnea, exercise, hypoxia, hypercapnia, hemorrhage, mechanical ventilation, and pharmacological interventions. However, due to the relative inaccessibility of the diaphragm, few studies have been conducted in humans since Q̇<sub>DIA</sub> measurements have historically required highly invasive and technically challenging techniques that are not conducive to routine use. Thus, our current understanding of Q̇<sub>DIA</sub> is informed almost exclusively by animal work with conflicting findings and its translation to humans is hindered by species-dependent variability in diaphragmatic structure and function. Novel approaches have been developed to quantify respiratory muscle blood flow in humans using minimally invasive techniques. More recently, contrast-enhanced ultrasound (CEUS), is a promising approach for quantifying Q̇<sub>DIA</sub> in humans, independent from other respiratory muscles. Using novel approaches to quantify Q̇<sub>DIA</sub> in humans, future research can aim to advance our understanding of Q̇<sub>DIA</sub> in humans in health and disease, including exercise, sex-based comparisons, and critical care.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00669.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rhythmic contraction of the diaphragm facilitates continuous pulmonary ventilation essential for life. Adequate blood flow to the diaphragm is critical to continuously support contractile function, as an imbalance in nutritive supply and demand can lead to diaphragm insufficiency, patient morbidity and mortality. Given oxygen supply to the diaphragm is key to its function, it is no surprise that more than 200 animal studies have investigated diaphragm blood flow (Q̇DIA) regulation over the past century. This work has advanced our understanding of the diaphragm's circulatory control (i.e., regional blood flow heterogeneity, mechanical impediment) and response to a variety of conditions, including eupnea, exercise, hypoxia, hypercapnia, hemorrhage, mechanical ventilation, and pharmacological interventions. However, due to the relative inaccessibility of the diaphragm, few studies have been conducted in humans since Q̇DIA measurements have historically required highly invasive and technically challenging techniques that are not conducive to routine use. Thus, our current understanding of Q̇DIA is informed almost exclusively by animal work with conflicting findings and its translation to humans is hindered by species-dependent variability in diaphragmatic structure and function. Novel approaches have been developed to quantify respiratory muscle blood flow in humans using minimally invasive techniques. More recently, contrast-enhanced ultrasound (CEUS), is a promising approach for quantifying Q̇DIA in humans, independent from other respiratory muscles. Using novel approaches to quantify Q̇DIA in humans, future research can aim to advance our understanding of Q̇DIA in humans in health and disease, including exercise, sex-based comparisons, and critical care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信