Hannah Peckham, Anna Radziszewska, Justyna Sikora, Nina M de Gruijter, Restuadi Restuadi, Melissa Kartawinata, Lucia Martin-Gutierrez, George A Robinson, Claire T Deakin, Lucy R Wedderburn, Elizabeth C Jury, Gary Butler, Emma S Chambers, Elizabeth C Rosser, Coziana Ciurtin
{"title":"Estrogen influences class-switched memory B cell frequency only in humans with two X chromosomes.","authors":"Hannah Peckham, Anna Radziszewska, Justyna Sikora, Nina M de Gruijter, Restuadi Restuadi, Melissa Kartawinata, Lucia Martin-Gutierrez, George A Robinson, Claire T Deakin, Lucy R Wedderburn, Elizabeth C Jury, Gary Butler, Emma S Chambers, Elizabeth C Rosser, Coziana Ciurtin","doi":"10.1084/jem.20241253","DOIUrl":null,"url":null,"abstract":"<p><p>Sex differences in immunity are well-documented, though mechanisms underpinning these differences remain ill-defined. Here, in a human-only ex vivo study, we demonstrate that postpubertal cisgender females have higher levels of CD19+CD27+IgD- class-switched memory B cells compared with age-matched cisgender males. This increase is only observed after puberty and before menopause, suggesting a strong influence for sex hormones. Accordingly, B cells express high levels of estrogen receptor 2 (ESR2), and class-switch-regulating genes are enriched for ESR2-binding sites. In a gender-diverse cohort, blockade of natal estrogen in transgender males (XX karyotype) reduced class-switched memory B cell frequency, while gender-affirming estradiol treatment in transgender females (XY karyotype) did not increase these levels. In postmenopausal cis-females, class-switched memory B cells were increased in those taking hormone replacement therapy (HRT) compared with those who were not. These data demonstrate that sex hormones and chromosomes work in tandem to impact immune responses, with estrogen only influencing the frequency of class-switched memory B cells in individuals with an XX chromosomal background.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 4","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241253","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sex differences in immunity are well-documented, though mechanisms underpinning these differences remain ill-defined. Here, in a human-only ex vivo study, we demonstrate that postpubertal cisgender females have higher levels of CD19+CD27+IgD- class-switched memory B cells compared with age-matched cisgender males. This increase is only observed after puberty and before menopause, suggesting a strong influence for sex hormones. Accordingly, B cells express high levels of estrogen receptor 2 (ESR2), and class-switch-regulating genes are enriched for ESR2-binding sites. In a gender-diverse cohort, blockade of natal estrogen in transgender males (XX karyotype) reduced class-switched memory B cell frequency, while gender-affirming estradiol treatment in transgender females (XY karyotype) did not increase these levels. In postmenopausal cis-females, class-switched memory B cells were increased in those taking hormone replacement therapy (HRT) compared with those who were not. These data demonstrate that sex hormones and chromosomes work in tandem to impact immune responses, with estrogen only influencing the frequency of class-switched memory B cells in individuals with an XX chromosomal background.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.