Sen Yang , Chao-Hao Guo , Wen-Yue Tong , Xiao-Yun Liu , Jing-Chen Li , Ming Kang
{"title":"Identification and characterization of anaerobically activated promoters in Escherichia coli","authors":"Sen Yang , Chao-Hao Guo , Wen-Yue Tong , Xiao-Yun Liu , Jing-Chen Li , Ming Kang","doi":"10.1016/j.jbiotec.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Anaerobically activated promoters in <em>Escherichia coli</em> play crucial roles in transcriptional regulation during cellular responses to decreased oxygen concentrations and serve as essential tools for implementing dynamic regulation in metabolic engineering. These promoters exhibit transcriptional activity only under low-oxygen or anaerobic conditions. To discover novel anaerobically activated promoters, this study selected 11 native promoters from <em>E. coli</em> databases and characterized their activities using flow cytometry. Subsequently, we optimized the key elements of these promoters and re-evaluated their activities to investigate the impact of functional elements on promoter performance. Furthermore, we verified the regulatory mechanisms of these promoters by knocking out host regulatory genes. Finally, we characterized the promoters' responsiveness to aerobic-anaerobic transitions by rapidly switching cultivation environments during host growth. This study identified several novel anaerobically activated promoters and comprehensively characterized their performance and features from multiple aspects. The identified promoters provide new tools for oxygen-limited or anaerobic production in metabolic engineering, while the findings from promoter element optimization offer valuable references for the design of anaerobically activated promoters.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"402 ","pages":"Pages 30-38"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625000537","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobically activated promoters in Escherichia coli play crucial roles in transcriptional regulation during cellular responses to decreased oxygen concentrations and serve as essential tools for implementing dynamic regulation in metabolic engineering. These promoters exhibit transcriptional activity only under low-oxygen or anaerobic conditions. To discover novel anaerobically activated promoters, this study selected 11 native promoters from E. coli databases and characterized their activities using flow cytometry. Subsequently, we optimized the key elements of these promoters and re-evaluated their activities to investigate the impact of functional elements on promoter performance. Furthermore, we verified the regulatory mechanisms of these promoters by knocking out host regulatory genes. Finally, we characterized the promoters' responsiveness to aerobic-anaerobic transitions by rapidly switching cultivation environments during host growth. This study identified several novel anaerobically activated promoters and comprehensively characterized their performance and features from multiple aspects. The identified promoters provide new tools for oxygen-limited or anaerobic production in metabolic engineering, while the findings from promoter element optimization offer valuable references for the design of anaerobically activated promoters.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.