Gerda Techert, Björn Drobot, Robert Braun, Christoph Bloss, Nora Schönberger, Sabine Matys, Katrin Pollmann, Franziska L Lederer
{"title":"Application of phage surface display for the identification of Eu<sup>3+</sup>-binding peptides.","authors":"Gerda Techert, Björn Drobot, Robert Braun, Christoph Bloss, Nora Schönberger, Sabine Matys, Katrin Pollmann, Franziska L Lederer","doi":"10.3389/fbioe.2025.1508018","DOIUrl":null,"url":null,"abstract":"<p><p>Europium as one of the rare earth elements (REE) has outstanding properties in terms of its application for high-tech and renewable energy products. The high supply risk of REE, coupled with their low recovery rates from secondary sources, necessitates innovative recycling approaches. We introduce a phage display-based peptide biosorbent recycling technology that offers a cost-effective and environmentally friendly solution for recovering metal ions, supporting circular economy goals. In this study, we used phage surface display to screen for peptides with high affinity for europium (III) ions (Eu<sup>3+</sup>). Performing several independent biopanning experiments with the Ph.D.-12 Phage Display Peptide Library and different elution methods as well as combining them with next-generation sequencing, we identified eight peptides with moderate to good affinities for Eu<sup>3+</sup> ions, verified by time-resolved laser fluorescence spectroscopy. The peptides EALTVNIKREME as well as DVHHVDGNDLQPFEGGGS and DSIHSDVTKDGRYPVEGGGS, the latter are variants of enriched dodecamers, proved to be the best candidates for future biosorption and selectivity studies. This study underscores the potential of phage surface display for peptide-based REE recovery, laying the foundation for selective recycling technologies from secondary raw materials.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1508018"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1508018","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Europium as one of the rare earth elements (REE) has outstanding properties in terms of its application for high-tech and renewable energy products. The high supply risk of REE, coupled with their low recovery rates from secondary sources, necessitates innovative recycling approaches. We introduce a phage display-based peptide biosorbent recycling technology that offers a cost-effective and environmentally friendly solution for recovering metal ions, supporting circular economy goals. In this study, we used phage surface display to screen for peptides with high affinity for europium (III) ions (Eu3+). Performing several independent biopanning experiments with the Ph.D.-12 Phage Display Peptide Library and different elution methods as well as combining them with next-generation sequencing, we identified eight peptides with moderate to good affinities for Eu3+ ions, verified by time-resolved laser fluorescence spectroscopy. The peptides EALTVNIKREME as well as DVHHVDGNDLQPFEGGGS and DSIHSDVTKDGRYPVEGGGS, the latter are variants of enriched dodecamers, proved to be the best candidates for future biosorption and selectivity studies. This study underscores the potential of phage surface display for peptide-based REE recovery, laying the foundation for selective recycling technologies from secondary raw materials.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.