Amanda Helen Winningham, Eve Camper Rhoads, Michelle Lynn Brinkmeier, Sebastian Alexis Vishnopolska, Jacob Otto Kitzman, Sally Ann Camper, María Inés Pérez Millán
{"title":"Role of PROP1 in postnatal pituitary gland maturation.","authors":"Amanda Helen Winningham, Eve Camper Rhoads, Michelle Lynn Brinkmeier, Sebastian Alexis Vishnopolska, Jacob Otto Kitzman, Sally Ann Camper, María Inés Pérez Millán","doi":"10.1210/endocr/bqaf047","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the pituitary-specific transcription factor PROP1 are the most common, known cause of hypopituitarism in humans. Prop1 is the first pituitary-specific gene in the hierarchy of transcription factors that regulate pituitary development. It is essential for regulating the transition of pituitary stem cells to hormone-producing cells in an epithelial to mesenchymal-like transition process. It is also critical for activation of the lineage specific transcription factor POU1F1 in early organogenesis. Prop1 deficient mice have pituitary dysmorphology and lack the cells that produce growth hormone (GH), thyroid stimulating hormone (TSH), and prolactin (PRL). Prop1 is expressed in stem cells postnatally, but it is not known whether postnatal expression is necessary for completion of pituitary gland growth or organ maintenance. We tested whether PROP1 has a role in postnatal pituitary development by generating a conditional allele and deleting a crucial exon after birth. We determined that postnatal expression of Prop1 is important for appropriate expansion of the POU1F1 lineage and for robust expression of TSH, GH, and PRL in the early postnatal period. However, by 2 weeks of age, compensatory proliferation of committed POU1F1-expressing cells, but not SOX2-expressing stem cells, have normalized pituitary function. Thus, PROP1 appears to be dispensable after birth in mice.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf047","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in the pituitary-specific transcription factor PROP1 are the most common, known cause of hypopituitarism in humans. Prop1 is the first pituitary-specific gene in the hierarchy of transcription factors that regulate pituitary development. It is essential for regulating the transition of pituitary stem cells to hormone-producing cells in an epithelial to mesenchymal-like transition process. It is also critical for activation of the lineage specific transcription factor POU1F1 in early organogenesis. Prop1 deficient mice have pituitary dysmorphology and lack the cells that produce growth hormone (GH), thyroid stimulating hormone (TSH), and prolactin (PRL). Prop1 is expressed in stem cells postnatally, but it is not known whether postnatal expression is necessary for completion of pituitary gland growth or organ maintenance. We tested whether PROP1 has a role in postnatal pituitary development by generating a conditional allele and deleting a crucial exon after birth. We determined that postnatal expression of Prop1 is important for appropriate expansion of the POU1F1 lineage and for robust expression of TSH, GH, and PRL in the early postnatal period. However, by 2 weeks of age, compensatory proliferation of committed POU1F1-expressing cells, but not SOX2-expressing stem cells, have normalized pituitary function. Thus, PROP1 appears to be dispensable after birth in mice.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.