Roghayeh Kamran Samani, Masoud A Mehrgardi, Fatemeh Maghsoudinia, Mohammad Najafi, Fatemeh Mehradnia
{"title":"Evaluation of folic acid-targeted gadolinium-loaded perfluorohexane nanodroplets on the megavoltage X-ray treatment efficiency of liver cancer.","authors":"Roghayeh Kamran Samani, Masoud A Mehrgardi, Fatemeh Maghsoudinia, Mohammad Najafi, Fatemeh Mehradnia","doi":"10.1016/j.ejps.2025.107059","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of radiation therapy can decrease due to the inherent radioresistance of different tumor cells. Gadolinium shows significant potential as a radiosensitivity enhancer due to its high atomic number. In this study, a novel theranostic nanoprobe based on folic acid-conjugated gadolinium-loaded nanodroplets (FA-Gd-NDs) has been introduced for ultrasound imaging (USI)-guided radiation therapy of hepatocellular carcinoma. The ultrasound echogenicity evaluation of NDs, Gd release studies, biocompatibility test of Gd-NDs, colony assay, cellular uptake of NDs via fluorescence microscopy, and flow cytometry analysis were performed on Hepa1-6 cancer and L929 normal cell lines. Our results showed that synthesized NDs significantly enhanced ultrasound signal intensity in PBS solution and agarose gel phantom. MTT and clonogenic assays indicated that Gd-NDs substantially reduced the cell viability and also surviving fraction of Hepa1-6 cancer cells under US and X-ray exposure. Additionally, FA-Gd-NDs exhibited sensitization enhancement factor (SER) of 1.8 after concurrent exposure to US and X-ray. Fluorescence imaging demonstrated more internalization of FA-Gd-NDs into cancer cells in comparison with normal cells. According to flow cytometry results, the Gd-NDs and FA-Gd-NDs uptake by L929 cell line were 20% and 28%, respectively, while their uptake by Hepa1-6 cells was 60% and 94%, respectively. In conclusion, the synthesized novel theranostic nanoprobe shows great potential for enhancing the efficacy of radiation therapy and enabling ultrasound image-guided radiation therapy of cancers.</p>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":" ","pages":"107059"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejps.2025.107059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The efficacy of radiation therapy can decrease due to the inherent radioresistance of different tumor cells. Gadolinium shows significant potential as a radiosensitivity enhancer due to its high atomic number. In this study, a novel theranostic nanoprobe based on folic acid-conjugated gadolinium-loaded nanodroplets (FA-Gd-NDs) has been introduced for ultrasound imaging (USI)-guided radiation therapy of hepatocellular carcinoma. The ultrasound echogenicity evaluation of NDs, Gd release studies, biocompatibility test of Gd-NDs, colony assay, cellular uptake of NDs via fluorescence microscopy, and flow cytometry analysis were performed on Hepa1-6 cancer and L929 normal cell lines. Our results showed that synthesized NDs significantly enhanced ultrasound signal intensity in PBS solution and agarose gel phantom. MTT and clonogenic assays indicated that Gd-NDs substantially reduced the cell viability and also surviving fraction of Hepa1-6 cancer cells under US and X-ray exposure. Additionally, FA-Gd-NDs exhibited sensitization enhancement factor (SER) of 1.8 after concurrent exposure to US and X-ray. Fluorescence imaging demonstrated more internalization of FA-Gd-NDs into cancer cells in comparison with normal cells. According to flow cytometry results, the Gd-NDs and FA-Gd-NDs uptake by L929 cell line were 20% and 28%, respectively, while their uptake by Hepa1-6 cells was 60% and 94%, respectively. In conclusion, the synthesized novel theranostic nanoprobe shows great potential for enhancing the efficacy of radiation therapy and enabling ultrasound image-guided radiation therapy of cancers.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.