Biochemical properties of molybdenum cofactor isolated from fish liver.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mereke Satkanov, Zhadyrassyn Nurbekova, Alikhan Bilyalov, Diana Tazhibay, Masalimov Zhaksylyk, Maral Kulatayeva, Zhaoqi Wang, Junfang Cui, Zerekbay Alikulov
{"title":"Biochemical properties of molybdenum cofactor isolated from fish liver.","authors":"Mereke Satkanov, Zhadyrassyn Nurbekova, Alikhan Bilyalov, Diana Tazhibay, Masalimov Zhaksylyk, Maral Kulatayeva, Zhaoqi Wang, Junfang Cui, Zerekbay Alikulov","doi":"10.1007/s10695-025-01473-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have demonstrated that the fish liver protein fraction extract obtained by gel filtration exhibits nitric oxide synthase (NOS)-independent NO synthase from nitrates and nitrites. This activity was attributed to the molybdenum enzymes (Mo-enzymes) group which was already demonstrated in mammals. However, the evidence that NOS-independent NO synthase activity can be classified as a fish Mo-enzyme has been poorly demonstrated. In mammals, Mo-enzymes NOS-independent NO synthase activity occurs at the molybdenum center. We studied the ability of molybdenum cofactor (Mo-co) isolated from the protein fraction of fish liver extract to restore the NADPH-nitrate reductase (NADPH-NR) activity from Neurospora crassa nit-1. Our results demonstrated that Mo-co from the extract from fish liver was able to recover NADPH-NR activity in the extract of N. crassa nit-1, thereby possessing the ability to reduce nitrogen compounds. However, the oxidation of Mo-co from fish liver destabilizes molybdenum, leading to its inactivation. However, the results obtained under anaerobic conditions with dithionite indicate that Mo remains bound to Mo-co under highly reducing conditions. This may also indicate that the availability of Mo is not the sole factor affecting the activity of Mo-enzymes, also oxygen content after the synthesis of mature Mo-co may play a role in cofactor inactivation.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 2","pages":"62"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01473-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have demonstrated that the fish liver protein fraction extract obtained by gel filtration exhibits nitric oxide synthase (NOS)-independent NO synthase from nitrates and nitrites. This activity was attributed to the molybdenum enzymes (Mo-enzymes) group which was already demonstrated in mammals. However, the evidence that NOS-independent NO synthase activity can be classified as a fish Mo-enzyme has been poorly demonstrated. In mammals, Mo-enzymes NOS-independent NO synthase activity occurs at the molybdenum center. We studied the ability of molybdenum cofactor (Mo-co) isolated from the protein fraction of fish liver extract to restore the NADPH-nitrate reductase (NADPH-NR) activity from Neurospora crassa nit-1. Our results demonstrated that Mo-co from the extract from fish liver was able to recover NADPH-NR activity in the extract of N. crassa nit-1, thereby possessing the ability to reduce nitrogen compounds. However, the oxidation of Mo-co from fish liver destabilizes molybdenum, leading to its inactivation. However, the results obtained under anaerobic conditions with dithionite indicate that Mo remains bound to Mo-co under highly reducing conditions. This may also indicate that the availability of Mo is not the sole factor affecting the activity of Mo-enzymes, also oxygen content after the synthesis of mature Mo-co may play a role in cofactor inactivation.

最近的研究表明,通过凝胶过滤获得的鱼肝蛋白馏分提取物显示出一氧化氮合成酶(NOS)依赖于硝酸盐和亚硝酸盐的一氧化氮合成酶。这种活性被归因于钼酶(Mo-enzymes)组,这在哺乳动物中已经得到证实。然而,NOS 依赖性氮氧化物合酶的活性可归类为鱼类钼酶的证据还不充分。在哺乳动物中,钼酶不依赖于 NOS 的 NO 合酶活性发生在钼中心。我们研究了从鱼肝提取物蛋白质部分分离出来的钼辅助因子(Mo-co)恢复神经孢子菌 nit-1 的 NADPH-硝酸还原酶(NADPH-NR)活性的能力。我们的研究结果表明,从鱼肝提取物中提取的 Mo-co 能够恢复硝化细菌 nit-1 提取物中 NADPH-NR 的活性,从而具有还原氮化合物的能力。然而,鱼肝中的 Mo-co 氧化会破坏钼的稳定性,导致钼失活。不过,在厌氧条件下使用连二亚硫酸盐获得的结果表明,在高度还原条件下,钼仍与 Mo-co 结合。这也可能表明,钼的可获得性并不是影响钼酶活性的唯一因素,在合成成熟的 Mo-co 后,氧含量也可能在辅助因子失活方面发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信