Mogrol Regulates the Expression of ATPase Na+/K+ Transport Subunit 3, Inhibits Cardiomyocyte Apoptosis, and Plays a Protective Role Against Myocardial Infarction.

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL
Drug Design, Development and Therapy Pub Date : 2025-03-02 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S490484
Feng Wang, Jinling Zhou, Weiwei Liu, Wei Wang, Boyan Tian, Jinyu Liu, Han Zhang, Peina He, Xiaoyun Yang, Li Yang, Yueheng Wang
{"title":"Mogrol Regulates the Expression of ATPase Na+/K+ Transport Subunit 3, Inhibits Cardiomyocyte Apoptosis, and Plays a Protective Role Against Myocardial Infarction.","authors":"Feng Wang, Jinling Zhou, Weiwei Liu, Wei Wang, Boyan Tian, Jinyu Liu, Han Zhang, Peina He, Xiaoyun Yang, Li Yang, Yueheng Wang","doi":"10.2147/DDDT.S490484","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the advancements in medical technology, the death rate from myocardial infarction (MI), a prevalent heart illness, has gradually decreased; however, treatment hurdles and diagnostic issues remain. Mogrol is a naturally occurring plant extract with specific biological activities such as antioxidant, anti-inflammatory, antitumor, and hypoglycemic effects. These biological activities make it a potential therapeutic drug or research subject; however, its function in MI remains unclear.</p><p><strong>Methods: </strong>Potential targets of mogrol were searched using the MI Disease Database through online databases. Among the three intersecting genes, we focused on ATPase Na+/K+ transporting subunit 3A3, which is expressed at low levels in patients with MI. The preventive effect of mogrol against MI was investigated using cardiac ultrasonography, Western blotting, qPCR assay, Cell counting kit-8, Ca2+ concentration measurement, Na+/K+-ATPase, and flow cytometry.</p><p><strong>Results: </strong>The findings demonstrated that mogrol upregulated Ca2+ concentration and ATPase Na+/K+ transporting subunit 3 protein levels in cardiomyocytes and tissues, downregulated the apoptosis-related proteins B-cell lymphoma 2-like protein 4, cleaved-caspase-3, and upregulated B-cell lymphoma 2. These effects enhanced cardiac function, prevented cardiomyocyte apoptosis, encouraged cardiomyocyte proliferation, and protected mice from MI. Knocking down ATP1A3 can reverse the protective effect of Mogrol.</p><p><strong>Conclusion: </strong>Mogrol may have a protective effect on myocardial infarction by regulating Ca2+ concentration and the level of the ATPase Na+/K+ transport subunit 3 protein, as well as by regulating apoptosis-related proteins. Further revealing the pharmacokinetics of mogrol in vivo is expected to make it a subsequent drug for the treatment of cardiac infarction.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"1489-1502"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S490484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: With the advancements in medical technology, the death rate from myocardial infarction (MI), a prevalent heart illness, has gradually decreased; however, treatment hurdles and diagnostic issues remain. Mogrol is a naturally occurring plant extract with specific biological activities such as antioxidant, anti-inflammatory, antitumor, and hypoglycemic effects. These biological activities make it a potential therapeutic drug or research subject; however, its function in MI remains unclear.

Methods: Potential targets of mogrol were searched using the MI Disease Database through online databases. Among the three intersecting genes, we focused on ATPase Na+/K+ transporting subunit 3A3, which is expressed at low levels in patients with MI. The preventive effect of mogrol against MI was investigated using cardiac ultrasonography, Western blotting, qPCR assay, Cell counting kit-8, Ca2+ concentration measurement, Na+/K+-ATPase, and flow cytometry.

Results: The findings demonstrated that mogrol upregulated Ca2+ concentration and ATPase Na+/K+ transporting subunit 3 protein levels in cardiomyocytes and tissues, downregulated the apoptosis-related proteins B-cell lymphoma 2-like protein 4, cleaved-caspase-3, and upregulated B-cell lymphoma 2. These effects enhanced cardiac function, prevented cardiomyocyte apoptosis, encouraged cardiomyocyte proliferation, and protected mice from MI. Knocking down ATP1A3 can reverse the protective effect of Mogrol.

Conclusion: Mogrol may have a protective effect on myocardial infarction by regulating Ca2+ concentration and the level of the ATPase Na+/K+ transport subunit 3 protein, as well as by regulating apoptosis-related proteins. Further revealing the pharmacokinetics of mogrol in vivo is expected to make it a subsequent drug for the treatment of cardiac infarction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信