{"title":"Multiple DNA damages induced by water radiolysis demonstrated using a dynamic Monte Carlo code.","authors":"Takeshi Kai, Tomohiro Toigawa, Yusuke Matsuya, Yuho Hirata, Hidetsugu Tsuchida, Yuma Ito, Akinari Yokoya","doi":"10.1038/s42004-025-01453-x","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple DNA damage resulting from different nearby ionizations of water molecules is an important process of the initial step of radiobiological effects. Several important characteristics of the damaged DNA site such as the critical size and types of chemical lesions are not well-known. We investigated this long-term issue by developing a dynamic Monte Carlo code for the chemical process. The reaction probabilities and the spatial distribution of lesions were theoretically solved as a function of the spur radius and distance between DNA and the initial ionisation position. From our previous reported results, we suggest that a hydroxyl radical and a hydrated electron from a single spur can concomitantly react within a 10 base pairs DNA to induce a multiple DNA damage site comprising a DNA single-strand break and reductive nucleobase damage; however, the reaction probability is 0.4% or less. Once this combination arises, it may result in a DNA double-strand break (DSB). DSBs are difficult to repair, which may lead to cell death or misrepair, and could lead to point mutations in the genome.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"60"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01453-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple DNA damage resulting from different nearby ionizations of water molecules is an important process of the initial step of radiobiological effects. Several important characteristics of the damaged DNA site such as the critical size and types of chemical lesions are not well-known. We investigated this long-term issue by developing a dynamic Monte Carlo code for the chemical process. The reaction probabilities and the spatial distribution of lesions were theoretically solved as a function of the spur radius and distance between DNA and the initial ionisation position. From our previous reported results, we suggest that a hydroxyl radical and a hydrated electron from a single spur can concomitantly react within a 10 base pairs DNA to induce a multiple DNA damage site comprising a DNA single-strand break and reductive nucleobase damage; however, the reaction probability is 0.4% or less. Once this combination arises, it may result in a DNA double-strand break (DSB). DSBs are difficult to repair, which may lead to cell death or misrepair, and could lead to point mutations in the genome.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.