Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions.

IF 5.3 2区 医学 Q1 ONCOLOGY
Wei-Ming Cheng, Po-Chen Li, Minh Tran-Binh Nguyen, Yu-Teng Lin, Yu-Tang Huang, Tai-Shan Cheng, Thi-Huong Nguyen, Thu-Ha Tran, Tzu-Yi Huang, Thu-Huyen Hoang, Sin-Yu Chen, Yu-Chieh Chu, Chih-Wei Wu, Ming-Fen Lee, Yi-Shiou Chiou, Hsiao-Sheng Liu, Yi-Ren Hong, Peter Mu-Hsin Chang, Yu-Feng Hu, Ying-Chih Chang, Jin-Mei Lai, Chi-Ying F Huang
{"title":"Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions.","authors":"Wei-Ming Cheng, Po-Chen Li, Minh Tran-Binh Nguyen, Yu-Teng Lin, Yu-Tang Huang, Tai-Shan Cheng, Thi-Huong Nguyen, Thu-Ha Tran, Tzu-Yi Huang, Thu-Huyen Hoang, Sin-Yu Chen, Yu-Chieh Chu, Chih-Wei Wu, Ming-Fen Lee, Yi-Shiou Chiou, Hsiao-Sheng Liu, Yi-Ren Hong, Peter Mu-Hsin Chang, Yu-Feng Hu, Ying-Chih Chang, Jin-Mei Lai, Chi-Ying F Huang","doi":"10.1186/s12935-025-03712-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) poses a significant clinical challenge because of drug resistance, which can adversely impact patient outcomes. Recent research has shown that abnormalities within the tumor microenvironment, especially hyperglycemia, play a crucial role in promoting metastasis and chemoresistance, and thereby determine the overall prognosis of patients with advanced CRC.</p><p><strong>Methods: </strong>This study employs data mining and consensus molecular subtype (CMS) techniques to identify pitavastatin and atorvastatin as potential agents for targeting high glucose-induced drug resistance in advanced CRC cells. CRC cells maintained under either low or high glucose conditions were established and utilized to assess the cytotoxic effects of pitavastatin and atorvastatin, both with and without 5-fluorouracil (5-FU). CRC 3D spheroids cultured were also included to demonstrate the anti-drug resistance of pitavastatin and atorvastatin.</p><p><strong>Results: </strong>A bioinformatics analysis identified pitavastatin and atorvastatin as promising drug candidates. The CMS4 CRC cell line SW480 (SW480-HG) was established and cultured under high glucose conditions to simulate hyperglycemia-induced drug resistance and metastasis in CRC patients. Pitavastatin and atorvastatin could inhibit cell proliferation and 3D spheroid formation of CMS4 CRC cells under high glucose conditions. In addition, both pitavastatin and atorvastatin can synergistically promote the 5-FU-mediated cytotoxic effect and inhibit the growth of 5-FU-resistant CRC cells. Mechanistically, pitavastatin and atorvastatin can induce apoptosis and synergistically promote the 5-FU-mediated cytotoxic effect by activating autophagy, as well as the PERK/ATF4/CHOP signaling pathway while decreasing YAP expression.</p><p><strong>Conclusion: </strong>This study highlights the biomarker-guided precision medicine strategy for drug repurposing. Pitavastatin and atorvastatin could be used to assist in the treatment of advanced CRC, particularly with CMS4 subtype CRC patients who also suffer from hyperglycemia. Pitavastatin, with an achievable dosage used for clinical interventions, is highly recommended for a novel CRC therapeutic strategy.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"79"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03712-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) poses a significant clinical challenge because of drug resistance, which can adversely impact patient outcomes. Recent research has shown that abnormalities within the tumor microenvironment, especially hyperglycemia, play a crucial role in promoting metastasis and chemoresistance, and thereby determine the overall prognosis of patients with advanced CRC.

Methods: This study employs data mining and consensus molecular subtype (CMS) techniques to identify pitavastatin and atorvastatin as potential agents for targeting high glucose-induced drug resistance in advanced CRC cells. CRC cells maintained under either low or high glucose conditions were established and utilized to assess the cytotoxic effects of pitavastatin and atorvastatin, both with and without 5-fluorouracil (5-FU). CRC 3D spheroids cultured were also included to demonstrate the anti-drug resistance of pitavastatin and atorvastatin.

Results: A bioinformatics analysis identified pitavastatin and atorvastatin as promising drug candidates. The CMS4 CRC cell line SW480 (SW480-HG) was established and cultured under high glucose conditions to simulate hyperglycemia-induced drug resistance and metastasis in CRC patients. Pitavastatin and atorvastatin could inhibit cell proliferation and 3D spheroid formation of CMS4 CRC cells under high glucose conditions. In addition, both pitavastatin and atorvastatin can synergistically promote the 5-FU-mediated cytotoxic effect and inhibit the growth of 5-FU-resistant CRC cells. Mechanistically, pitavastatin and atorvastatin can induce apoptosis and synergistically promote the 5-FU-mediated cytotoxic effect by activating autophagy, as well as the PERK/ATF4/CHOP signaling pathway while decreasing YAP expression.

Conclusion: This study highlights the biomarker-guided precision medicine strategy for drug repurposing. Pitavastatin and atorvastatin could be used to assist in the treatment of advanced CRC, particularly with CMS4 subtype CRC patients who also suffer from hyperglycemia. Pitavastatin, with an achievable dosage used for clinical interventions, is highly recommended for a novel CRC therapeutic strategy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信