{"title":"Novel Sb₂S₃-3,4,9,10-Perylene Tetracarboxylic Acid Composite for Enhanced Photocatalytic Reduction of Cr(VI) in Aqueous Media.","authors":"Yongshan Ma, Qingxiang Guan, Qingbo Huang, Xuewu Zhu, Fengxia Zhang, Tianyi Jiang, Yanyan Zhu, Xuemei Li","doi":"10.1002/asia.202401708","DOIUrl":null,"url":null,"abstract":"<p><p>The construction of organic-inorganic semiconductor heterojunctions is an important way to improve the photocatalytic performance of semiconductors and inhibit the recombination of photogenerated charge carriers. In this paper, a novel Sb₂S₃-3,4,9,10-perylene tetracarboxylic acid (Sb<sub>2</sub>S<sub>3</sub>-PTCA) heterojunction was prepared by hydrothermal method. Compared with Sb<sub>2</sub>S<sub>3</sub> and PTCA, Sb<sub>2</sub>S<sub>3</sub>-PTCA composite catalyst had better photocatalytic reduction ability for Cr(VI) in aqueous solution under visible light conditions. The optimized Sb<sub>2</sub>S<sub>3</sub>-1.0 wt.% PTCA heterostructures exhibited significantly enhanced photocatalytic activity compared to pure Sb₂S₃ and PTAC, achieving a complete Cr(VI) reduction rate of 100 % in just 50 min. This will lead to cleaner effluent water being discharged into the environment, thereby reducing pollution and protecting aquatic ecosystems. The enhanced photocatalytic efficacy exhibited by the Sb<sub>2</sub>S<sub>3</sub>-PTCA heterostructure stems from the creation of a type II heterojunction, which facilitates a more proficient dissociation and transportation of the electron-hole pairs, thus contributing to its superior performance.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401708"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401708","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of organic-inorganic semiconductor heterojunctions is an important way to improve the photocatalytic performance of semiconductors and inhibit the recombination of photogenerated charge carriers. In this paper, a novel Sb₂S₃-3,4,9,10-perylene tetracarboxylic acid (Sb2S3-PTCA) heterojunction was prepared by hydrothermal method. Compared with Sb2S3 and PTCA, Sb2S3-PTCA composite catalyst had better photocatalytic reduction ability for Cr(VI) in aqueous solution under visible light conditions. The optimized Sb2S3-1.0 wt.% PTCA heterostructures exhibited significantly enhanced photocatalytic activity compared to pure Sb₂S₃ and PTAC, achieving a complete Cr(VI) reduction rate of 100 % in just 50 min. This will lead to cleaner effluent water being discharged into the environment, thereby reducing pollution and protecting aquatic ecosystems. The enhanced photocatalytic efficacy exhibited by the Sb2S3-PTCA heterostructure stems from the creation of a type II heterojunction, which facilitates a more proficient dissociation and transportation of the electron-hole pairs, thus contributing to its superior performance.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).