Exploration into the Synthesis and Sodium Storage Characteristics of Hard Carbon Derived from Plastics.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shuai Ruan, Xinping He, Hui Huang, Yongping Gan, Yang Xia, Jun Zhang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Xinhui Xia, Wenkui Zhang
{"title":"Exploration into the Synthesis and Sodium Storage Characteristics of Hard Carbon Derived from Plastics.","authors":"Shuai Ruan, Xinping He, Hui Huang, Yongping Gan, Yang Xia, Jun Zhang, Fangfang Tu, Jiayuan Xiang, Wangjun Wan, Chen Wang, Xinhui Xia, Wenkui Zhang","doi":"10.1002/asia.202401804","DOIUrl":null,"url":null,"abstract":"<p><p>The crux for the advancement of high-performance sodium-ion batteries resides in the development of low-cost, high-performance hard carbon anode materials. In this study, waste plastics are utilized as precursors to prepare plastic-derived hard carbon materials through a simple high-temperature one-step carbonization method, which is particularly suitable for new energy storage devices such as sodium-ion batteries and supercapacitors. Through in-depth exploration, we discover that the initial coulombic efficiency of hard carbon is intimately associated with its structure, within which the PU material exhibits the attributes of high capacity, initial coulombic efficiency, and excellent cycle performance, meriting further optimization of hard carbon precursor materials. In this study, a novel idea of preparing a high-performance hard carbon anode by a low-carbon and environmentally friendly method is proposed, and the key factors influencing the electrochemical performance of hard carbon materials are revealed, providing a valuable experimental basis for the further development of sodium anodes.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401804"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401804","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The crux for the advancement of high-performance sodium-ion batteries resides in the development of low-cost, high-performance hard carbon anode materials. In this study, waste plastics are utilized as precursors to prepare plastic-derived hard carbon materials through a simple high-temperature one-step carbonization method, which is particularly suitable for new energy storage devices such as sodium-ion batteries and supercapacitors. Through in-depth exploration, we discover that the initial coulombic efficiency of hard carbon is intimately associated with its structure, within which the PU material exhibits the attributes of high capacity, initial coulombic efficiency, and excellent cycle performance, meriting further optimization of hard carbon precursor materials. In this study, a novel idea of preparing a high-performance hard carbon anode by a low-carbon and environmentally friendly method is proposed, and the key factors influencing the electrochemical performance of hard carbon materials are revealed, providing a valuable experimental basis for the further development of sodium anodes.

探索从塑料中提取的硬碳的合成和钠储存特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信