Coordinated Role of Autophagy and ERAD in Maintaining Neuroendocrine Function by Preventing Prohormone Aggregation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuya Pan, Xing He, Su Wu, Na Xiong, Xinyu Hou, Heting Wang, Diane Somlo, Martin Spiess, Haiyang Wang, Jifeng Yang, Chunliang Li, Shasha Li, Wenbin Ma, Yanming Chen, Jun Cui, Ling Qi, Guojun Shi
{"title":"Coordinated Role of Autophagy and ERAD in Maintaining Neuroendocrine Function by Preventing Prohormone Aggregation.","authors":"Xuya Pan, Xing He, Su Wu, Na Xiong, Xinyu Hou, Heting Wang, Diane Somlo, Martin Spiess, Haiyang Wang, Jifeng Yang, Chunliang Li, Shasha Li, Wenbin Ma, Yanming Chen, Jun Cui, Ling Qi, Guojun Shi","doi":"10.1002/advs.202411662","DOIUrl":null,"url":null,"abstract":"<p><p>Proteotoxicity induced by misfolded or aggregated proteins causes progressive neuronal damage. The endoplasmic reticulum (ER) protein quality control (ERQC) pathways are responsible for mitigating the accumulation of these misfolded or aggregated proteins, thus reducing proteotoxicity. Enhancing ERQC pathways is a promising strategy for treating neurodegenerative diseases. However, the mechanisms governing the initiation and degradation of misfolded or aggregated proteins in neurons remain largely unknown in vivo. In studying the maturation of proAVP in mouse AVP neurons, this study discovers that autophagy and ER-associated degradation (ERAD) ERQC pathways collaborate to maintain proAVP maturation and protect AVP neuron survival against proteotoxicity. Autophagy deficiency in mouse AVP neurons leads to the late-onset of diabetes insipidus. Mechanistically, autophagy selectively degrades mutant proAVP aggregates and endogenous HRD1 of the SEL1L-HRD1 ERAD complex through FAM134B mediated ER-phagy. HRD1 induction is responsible for reducing proAVP aggregation and maintaining AVP neuron function and survival under autophagy deficiency. Thus, autophagy and ERAD form a dual-protection system that orchestrates prohormone maturation and endocrine neuron survival, providing new insights in the complexity of neuroendocrinology and the intrinsic mechanism of neurodegenerative diseases, with therapeutic potential in protein folding diseases.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411662"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411662","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteotoxicity induced by misfolded or aggregated proteins causes progressive neuronal damage. The endoplasmic reticulum (ER) protein quality control (ERQC) pathways are responsible for mitigating the accumulation of these misfolded or aggregated proteins, thus reducing proteotoxicity. Enhancing ERQC pathways is a promising strategy for treating neurodegenerative diseases. However, the mechanisms governing the initiation and degradation of misfolded or aggregated proteins in neurons remain largely unknown in vivo. In studying the maturation of proAVP in mouse AVP neurons, this study discovers that autophagy and ER-associated degradation (ERAD) ERQC pathways collaborate to maintain proAVP maturation and protect AVP neuron survival against proteotoxicity. Autophagy deficiency in mouse AVP neurons leads to the late-onset of diabetes insipidus. Mechanistically, autophagy selectively degrades mutant proAVP aggregates and endogenous HRD1 of the SEL1L-HRD1 ERAD complex through FAM134B mediated ER-phagy. HRD1 induction is responsible for reducing proAVP aggregation and maintaining AVP neuron function and survival under autophagy deficiency. Thus, autophagy and ERAD form a dual-protection system that orchestrates prohormone maturation and endocrine neuron survival, providing new insights in the complexity of neuroendocrinology and the intrinsic mechanism of neurodegenerative diseases, with therapeutic potential in protein folding diseases.

自噬和ERAD通过防止前激素聚集在维持神经内分泌功能方面的协调作用
错误折叠或聚集的蛋白质引起的蛋白质毒性可导致进行性神经元损伤。内质网(ER)蛋白质量控制(ERQC)途径负责减轻这些错误折叠或聚集蛋白的积累,从而降低蛋白质毒性。增强ERQC通路是治疗神经退行性疾病的一种很有前途的策略。然而,控制神经元中错误折叠或聚集蛋白的启动和降解的机制在体内仍然很大程度上未知。在研究小鼠AVP神经元中proAVP的成熟过程中,本研究发现自噬和er相关降解(ERAD) ERQC途径共同维持proAVP成熟并保护AVP神经元免受蛋白质毒性的影响。小鼠AVP神经元自噬不足导致尿崩症的晚发性。机制上,自噬通过FAM134B介导的er吞噬选择性地降解突变体proAVP聚集体和SEL1L-HRD1 ERAD复合体的内源性HRD1。HRD1的诱导可减少proAVP的聚集,维持AVP神经元在自噬不足时的功能和存活。因此,自噬和ERAD形成了一个协调激素原成熟和内分泌神经元存活的双重保护系统,为神经内分泌学的复杂性和神经退行性疾病的内在机制提供了新的见解,在蛋白质折叠疾病中具有治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信