{"title":"Optimizing Root Phenotypes for Compacted Soils: Enhancing Root-Soil-Microbe Interactions.","authors":"Jingqi Xu, Zijian Long, Baoru Sun, Fangbo Zhang, Jianbo Shen, Kemo Jin","doi":"10.1111/pce.15462","DOIUrl":null,"url":null,"abstract":"<p><p>Soil compaction impedes root growth, reduces crop yields, and threatens global food security and sustainable agriculture. Addressing this challenge requires a comprehensive understanding of root-soil interactions in compacted environments. This review examines key root traits-architectural, anatomical, biochemical, and biomechanical-that enhance plant resilience in compacted soils. We discuss how these traits influence root penetration and the formation of more favorable soil pore structures, which are crucial for alleviating compaction stress. Additionally, we explore the molecular mechanisms underlying root adaptation, identifying key genetic and biochemical factors that contribute to stress-tolerant root phenotypes. The review emphasizes the role of root-microbe interactions in boosting root adaptability under compaction. By integrating these insights, we propose a framework for breeding crops with resilient root systems that thrive in high soil strength, supporting sustainable agricultural practices essential for food security amidst environmental challenges.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15462","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil compaction impedes root growth, reduces crop yields, and threatens global food security and sustainable agriculture. Addressing this challenge requires a comprehensive understanding of root-soil interactions in compacted environments. This review examines key root traits-architectural, anatomical, biochemical, and biomechanical-that enhance plant resilience in compacted soils. We discuss how these traits influence root penetration and the formation of more favorable soil pore structures, which are crucial for alleviating compaction stress. Additionally, we explore the molecular mechanisms underlying root adaptation, identifying key genetic and biochemical factors that contribute to stress-tolerant root phenotypes. The review emphasizes the role of root-microbe interactions in boosting root adaptability under compaction. By integrating these insights, we propose a framework for breeding crops with resilient root systems that thrive in high soil strength, supporting sustainable agricultural practices essential for food security amidst environmental challenges.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.