Precise tiller angle control by manipulating TAC1 expression in rice.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tao Yin, Yuxin Tai, Yao Sun, Zixiang Cheng, Chuanyin Wu, Yi Sui
{"title":"Precise tiller angle control by manipulating TAC1 expression in rice.","authors":"Tao Yin, Yuxin Tai, Yao Sun, Zixiang Cheng, Chuanyin Wu, Yi Sui","doi":"10.1111/jipb.13877","DOIUrl":null,"url":null,"abstract":"<p><p>Tiller angle shapes plant architecture, and is one of the top traits in plant breeding. A compact plant type reduces shading between plants, especially at high planting density, but also creates a humid microenvironment often associated with a higher incidence of pathogen and pest attacks, especially under highly humid climates. However, how to precisely manipulate the tiller angle to achieve a desirable plant type has been under-approached. Here we report the creation of gradient tiller angles in indica rice by fine tuning the expression of TILLER ANGLE CONTROL1 (TAC1), a domesticated gene in cultivated rice. We edited the regions upstream and downstream of the TAC1 coding sequence using multiplex CRISPR-Cas9 technology and developed homozygous allelic lines carrying deletions/inversions of various sizes at different positions. Those lines displayed smooth gradient changes in tiller angle that aligned well with TAC1 expression levels. Additionally, changes in the TAC1 expression level had no impact on other agronomic traits examined. TAC1 is well conserved across species, including perennial fruit trees in which mutation of TAC1 orthologs leads to a broomy plant type. Thus, our results provide a guide to creating tiller angles for selection according to climate zones in rice breeding programs, this approach can be extended to diverse species for improving plant architecture.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13877","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tiller angle shapes plant architecture, and is one of the top traits in plant breeding. A compact plant type reduces shading between plants, especially at high planting density, but also creates a humid microenvironment often associated with a higher incidence of pathogen and pest attacks, especially under highly humid climates. However, how to precisely manipulate the tiller angle to achieve a desirable plant type has been under-approached. Here we report the creation of gradient tiller angles in indica rice by fine tuning the expression of TILLER ANGLE CONTROL1 (TAC1), a domesticated gene in cultivated rice. We edited the regions upstream and downstream of the TAC1 coding sequence using multiplex CRISPR-Cas9 technology and developed homozygous allelic lines carrying deletions/inversions of various sizes at different positions. Those lines displayed smooth gradient changes in tiller angle that aligned well with TAC1 expression levels. Additionally, changes in the TAC1 expression level had no impact on other agronomic traits examined. TAC1 is well conserved across species, including perennial fruit trees in which mutation of TAC1 orthologs leads to a broomy plant type. Thus, our results provide a guide to creating tiller angles for selection according to climate zones in rice breeding programs, this approach can be extended to diverse species for improving plant architecture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信