{"title":"A simplified SynCom based on core-helper strain interactions enhances symbiotic nitrogen fixation in soybean.","authors":"Yanjun Li, Ruirui Li, Ran Liu, Junhao Shi, Xiaofan Qiu, Jianfeng Lei, Xu Zhao, Cunhu Wang, Minghai Ge, Huan Xu, Pengyao Miao, Zhongwei Li, Keke Yi, Hong Liao, Yongjia Zhong","doi":"10.1111/jipb.13881","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic microbial communities (SynComs) are a promising tool for making full use of the beneficial functions imparted by whole bacterial consortia. However, the complexity of reconstructed SynComs often limits their application in sustainable agriculture. Furthermore, inter-strain interactions are often neglected during SynCom construction. Here, we propose a strategy for constructing a simplified and functional SynCom (sfSynCom) by using elite helper strains that significantly improve the beneficial functions of the core symbiotic strain, here Bradyrhizobium elkanii BXYD3, to sustain the growth of soybean (Glycine max). We first identified helper strains that significantly promote nodulation and nitrogen fixation in soybean mediated by BXYD3. Two of these helper strains assigned to the Pantoea taxon produce acyl homoserine lactones, which significantly enhanced the colonization and infection of soybean by BXYD3. Finally, we constructed a sfSynCom from these core and helper strains. This sfSynCom based on the core-helper strategy was more effective at promoting nodulation than inoculation with BXYD3 alone and achieved effects comparable to those of a complex elite SynCom previously constructed on the basis of potential beneficial functions between microbes and plants alone. Our results suggest that considering interactions between strains as well as those between strains and the host plant might allow construction of sfSynComs.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13881","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic microbial communities (SynComs) are a promising tool for making full use of the beneficial functions imparted by whole bacterial consortia. However, the complexity of reconstructed SynComs often limits their application in sustainable agriculture. Furthermore, inter-strain interactions are often neglected during SynCom construction. Here, we propose a strategy for constructing a simplified and functional SynCom (sfSynCom) by using elite helper strains that significantly improve the beneficial functions of the core symbiotic strain, here Bradyrhizobium elkanii BXYD3, to sustain the growth of soybean (Glycine max). We first identified helper strains that significantly promote nodulation and nitrogen fixation in soybean mediated by BXYD3. Two of these helper strains assigned to the Pantoea taxon produce acyl homoserine lactones, which significantly enhanced the colonization and infection of soybean by BXYD3. Finally, we constructed a sfSynCom from these core and helper strains. This sfSynCom based on the core-helper strategy was more effective at promoting nodulation than inoculation with BXYD3 alone and achieved effects comparable to those of a complex elite SynCom previously constructed on the basis of potential beneficial functions between microbes and plants alone. Our results suggest that considering interactions between strains as well as those between strains and the host plant might allow construction of sfSynComs.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.