Evaluation of Infrared Intensities Using Diffusion Monte Carlo.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-03-20 Epub Date: 2025-03-07 DOI:10.1021/acs.jpca.4c08576
Pattarapon Moonkaen, Anne B McCoy
{"title":"Evaluation of Infrared Intensities Using Diffusion Monte Carlo.","authors":"Pattarapon Moonkaen, Anne B McCoy","doi":"10.1021/acs.jpca.4c08576","DOIUrl":null,"url":null,"abstract":"<p><p>Approaches for evaluating excited state wave functions and energies using diffusion Monte Carlo (DMC) with guiding functions (guided DMC) are discussed. For this work, the guiding functions are functions of a subset of the 3<i>N</i> - 6 coordinates that are needed to describe the structure of the molecule of interest. The DMC wave functions are used to evaluate intensities using two approaches. In the trial wave function approach, the product of the molecular wave function for one of the states involved in the transition and the guiding function for the second state is used to evaluate the matrix elements of the dipole moment. In the descendant weighting approach, descendant weights are used to evaluate the value of the wave function for one of the states involved in the transition at the geometries sampled by the DMC wave function for the second state. The descendant weighting approximation is shown to be more accurate as well as computationally more expensive compared to approximations that are based on various forms of the trial wave function approach. Strategies are explored, which combine results of different forms of the trial wave function approximation to minimize the errors in this approach. The trial wave function and descendant weighting approaches are applied to a study of a harmonic oscillator, where the sensitivity of the calculated energies and intensities to the quality of the trial wave function is explored. The two approaches are also applied to calculations of frequencies and intensities of transitions in water, H<sub>3</sub>O<sub>2</sub><sup>-</sup>, a four-dimensional (4D) model based on H<sub>3</sub>O<sub>2</sub><sup>-</sup> and H<sub>5</sub>O<sub>2</sub><sup>+</sup>. We also show how comparisons of the results obtained using several forms of the trial wave function approach allow us to explore how couplings among vibrational motions are reflected in the intensities.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2705-2717"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Approaches for evaluating excited state wave functions and energies using diffusion Monte Carlo (DMC) with guiding functions (guided DMC) are discussed. For this work, the guiding functions are functions of a subset of the 3N - 6 coordinates that are needed to describe the structure of the molecule of interest. The DMC wave functions are used to evaluate intensities using two approaches. In the trial wave function approach, the product of the molecular wave function for one of the states involved in the transition and the guiding function for the second state is used to evaluate the matrix elements of the dipole moment. In the descendant weighting approach, descendant weights are used to evaluate the value of the wave function for one of the states involved in the transition at the geometries sampled by the DMC wave function for the second state. The descendant weighting approximation is shown to be more accurate as well as computationally more expensive compared to approximations that are based on various forms of the trial wave function approach. Strategies are explored, which combine results of different forms of the trial wave function approximation to minimize the errors in this approach. The trial wave function and descendant weighting approaches are applied to a study of a harmonic oscillator, where the sensitivity of the calculated energies and intensities to the quality of the trial wave function is explored. The two approaches are also applied to calculations of frequencies and intensities of transitions in water, H3O2-, a four-dimensional (4D) model based on H3O2- and H5O2+. We also show how comparisons of the results obtained using several forms of the trial wave function approach allow us to explore how couplings among vibrational motions are reflected in the intensities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信