Functionalized Poly(ethylene Glycol) Diacrylate Scaffolds for In Situ Immunomodulation of Dendritic Cells Targeting Melanoma Tumor.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Neha Dalal, Hemavathi Dhandapani, Arvind Ingle, Deepak Sharma, Prakriti Tayalia
{"title":"Functionalized Poly(ethylene Glycol) Diacrylate Scaffolds for <i>In Situ</i> Immunomodulation of Dendritic Cells Targeting Melanoma Tumor.","authors":"Neha Dalal, Hemavathi Dhandapani, Arvind Ingle, Deepak Sharma, Prakriti Tayalia","doi":"10.1021/acsbiomaterials.4c02036","DOIUrl":null,"url":null,"abstract":"<p><p>Various immunotherapeutic strategies are being developed to fight cancer, which is one of the leading causes of mortality. Dendritic cells (DCs), being professional antigen-presenting cells, after efficient manipulation with tumor-associated antigens, can lead to effective T-cell recruitment and activation at the tumor site, resulting in cytotoxic T-cell-mediated cancer cell killing. To circumvent the inefficiencies of <i>ex vivo</i> DC modification and patient infusion, an alternative strategy involving <i>in situ</i> DC activation has been explored here. Here, the vaccine components are tumor lysates, as antigens, and polyinosinic:polycytidylic acid (poly(I:C)), a toll-like receptor-3 (TLR3) agonist, as an adjuvant. Our <i>in vitro</i> studies demonstrate that complexing poly(I:C) with a carrier molecule, chitosan, enhances its stability and accessibility to TLR3 in the DC endosomal membrane. Material-based localized delivery of immunomodulatory factors is known to improve their stability and reduce their off-target side effects. Here, PEGDA-PLL-based macroporous scaffolds allow easy recruitment of host cells, thereby enabling effective interaction between the vaccine components loaded on them and the infiltrating immune cells. The vaccine components present in the scaffold facilitate efficient DC activation and migration, leading to subsequent T-cell activation and antitumor response, as shown by our <i>in vivo</i> studies.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Various immunotherapeutic strategies are being developed to fight cancer, which is one of the leading causes of mortality. Dendritic cells (DCs), being professional antigen-presenting cells, after efficient manipulation with tumor-associated antigens, can lead to effective T-cell recruitment and activation at the tumor site, resulting in cytotoxic T-cell-mediated cancer cell killing. To circumvent the inefficiencies of ex vivo DC modification and patient infusion, an alternative strategy involving in situ DC activation has been explored here. Here, the vaccine components are tumor lysates, as antigens, and polyinosinic:polycytidylic acid (poly(I:C)), a toll-like receptor-3 (TLR3) agonist, as an adjuvant. Our in vitro studies demonstrate that complexing poly(I:C) with a carrier molecule, chitosan, enhances its stability and accessibility to TLR3 in the DC endosomal membrane. Material-based localized delivery of immunomodulatory factors is known to improve their stability and reduce their off-target side effects. Here, PEGDA-PLL-based macroporous scaffolds allow easy recruitment of host cells, thereby enabling effective interaction between the vaccine components loaded on them and the infiltrating immune cells. The vaccine components present in the scaffold facilitate efficient DC activation and migration, leading to subsequent T-cell activation and antitumor response, as shown by our in vivo studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信