{"title":"Ta<sub>4</sub>C<sub>3</sub> MXene Slows Progression of Fatty Liver Disease through Its Anti-Inflammatory and ROS-Scavenging Effects.","authors":"Shuying He, Yuerong Lv, Jingnan Qiu, Shudan Cui, Zixian Gao, Liang Peng","doi":"10.1021/acsami.4c20945","DOIUrl":null,"url":null,"abstract":"<p><p>Treating metabolic dysfunction-associated fatty liver disease (MAFLD) and reducing the occurrence of MAFLD-associated liver cancer remain challenging. Two-dimensional (2D) tantalum carbide (Ta<sub>4</sub>C<sub>3</sub>) MXene nanozymes (MXenzymes) exhibit antioxidant and anti-inflammatory activities and have thus attracted considerable attention in the fields of oncology and engineering. However, the potential mechanism of action and bioactive properties of Ta<sub>4</sub>C<sub>3</sub> in MAFLD remain uncertain. In our study, Ta<sub>4</sub>C<sub>3</sub> not only inhibited lipid accumulation and disrupted lipid metabolism in hepatocytes but also reduced cell death caused by fatty acids by decreasing intracellular reactive oxygen species (ROS) levels, which significantly promoted the polarization of M1 macrophages to M2 macrophages by alleviating oxidative stress and further suppressing inflammatory factor expression. In mice fed a methionine-choline-deficient (MCD) diet, Ta<sub>4</sub>C<sub>3</sub> reduced lipid accumulation, the infiltration of inflammatory cells, and liver cell apoptosis by modulating the cellular microenvironment through its anti-inflammatory and antioxidant properties. Therefore, Ta<sub>4</sub>C<sub>3</sub> can be used as a multifunctional bioactive material to alleviate hepatic steatosis and inflammation in individuals with MAFLD/metabolic dysfunction-associated steatohepatitis (MASH) because of its robust antioxidant and anti-inflammatory effects.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Treating metabolic dysfunction-associated fatty liver disease (MAFLD) and reducing the occurrence of MAFLD-associated liver cancer remain challenging. Two-dimensional (2D) tantalum carbide (Ta4C3) MXene nanozymes (MXenzymes) exhibit antioxidant and anti-inflammatory activities and have thus attracted considerable attention in the fields of oncology and engineering. However, the potential mechanism of action and bioactive properties of Ta4C3 in MAFLD remain uncertain. In our study, Ta4C3 not only inhibited lipid accumulation and disrupted lipid metabolism in hepatocytes but also reduced cell death caused by fatty acids by decreasing intracellular reactive oxygen species (ROS) levels, which significantly promoted the polarization of M1 macrophages to M2 macrophages by alleviating oxidative stress and further suppressing inflammatory factor expression. In mice fed a methionine-choline-deficient (MCD) diet, Ta4C3 reduced lipid accumulation, the infiltration of inflammatory cells, and liver cell apoptosis by modulating the cellular microenvironment through its anti-inflammatory and antioxidant properties. Therefore, Ta4C3 can be used as a multifunctional bioactive material to alleviate hepatic steatosis and inflammation in individuals with MAFLD/metabolic dysfunction-associated steatohepatitis (MASH) because of its robust antioxidant and anti-inflammatory effects.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.