Stormtime Evolution of the O + ${\mathrm{O}}^{+}$ Density: Magnetoseismic Analysis of Van Allen Probes Data

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Kazue Takahashi, Richard E. Denton, Peter Chi
{"title":"Stormtime Evolution of the \n \n \n \n O\n +\n \n \n ${\\mathrm{O}}^{+}$\n Density: Magnetoseismic Analysis of Van Allen Probes Data","authors":"Kazue Takahashi,&nbsp;Richard E. Denton,&nbsp;Peter Chi","doi":"10.1029/2024JA033657","DOIUrl":null,"url":null,"abstract":"<p>Measurements of singly ionized oxygen (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{O}}^{+}$</annotation>\n </semantics></math>) ions in the inner magnetosphere during geomagnetic storms are important because the ions affect various magnetospheric processes. We apply a magnetoseismic technique to Van Allen Probes data to statistically determine the spatial and temporal development of the region of elevated <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{O}}^{+}$</annotation>\n </semantics></math> number density <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>n</mi>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({n}_{{\\mathrm{O}}^{+}}\\right)$</annotation>\n </semantics></math>, referred to as the oxygen torus, during geomagnetic storms. This study is motivated by previous studies that reported magnetic local time (MLT) localization of the torus to the morning side. In our study, we first determine the frequencies of the fundamental through third harmonics of toroidal standing Alfvén waves to estimate the mass density <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>ρ</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $(\\rho )$</annotation>\n </semantics></math> and then use the electron density <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>n</mi>\n <mi>e</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({n}_{\\mathrm{e}}\\right)$</annotation>\n </semantics></math> derived from plasma wave spectra to define the average ion mass <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${M}_{\\mathrm{i}}$</annotation>\n </semantics></math> (=<span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>/</mo>\n <msub>\n <mi>n</mi>\n <mi>e</mi>\n </msub>\n </mrow>\n <annotation> $\\rho /{n}_{\\mathrm{e}}$</annotation>\n </semantics></math>). We obtain <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </msub>\n </mrow>\n <annotation> ${n}_{{\\mathrm{O}}^{+}}$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${M}_{\\mathrm{i}}$</annotation>\n </semantics></math> by making an assumption about the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>He</mtext>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${\\text{He}}^{+}$</annotation>\n </semantics></math> number density relative to the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{H}}^{+}$</annotation>\n </semantics></math> number density. All quantities are evaluated in a 15 min moving data window that moves in 5 min steps. By generating <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-MLT maps of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${M}_{\\mathrm{i}}$</annotation>\n </semantics></math> for different phases of 102 storms with SYMH minimum lower than <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>50</mn>\n </mrow>\n <annotation> ${-}50$</annotation>\n </semantics></math> nT, we find that a region of high <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${M}_{\\mathrm{i}}$</annotation>\n </semantics></math> appears on the morning side during the storm main phase and lasts for a few days. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </msub>\n </mrow>\n <annotation> ${n}_{{\\mathrm{O}}^{+}}$</annotation>\n </semantics></math> is also high on the morning side during the main phase, but this MLT skewing disappears during the recovery phase. Therefore, the MLT asymmetry of the oxygen torus depends on what parameter is considered.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033657","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033657","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Measurements of singly ionized oxygen ( O + ${\mathrm{O}}^{+}$ ) ions in the inner magnetosphere during geomagnetic storms are important because the ions affect various magnetospheric processes. We apply a magnetoseismic technique to Van Allen Probes data to statistically determine the spatial and temporal development of the region of elevated O + ${\mathrm{O}}^{+}$ number density n O + $\left({n}_{{\mathrm{O}}^{+}}\right)$ , referred to as the oxygen torus, during geomagnetic storms. This study is motivated by previous studies that reported magnetic local time (MLT) localization of the torus to the morning side. In our study, we first determine the frequencies of the fundamental through third harmonics of toroidal standing Alfvén waves to estimate the mass density ( ρ ) $(\rho )$ and then use the electron density n e $\left({n}_{\mathrm{e}}\right)$ derived from plasma wave spectra to define the average ion mass M i ${M}_{\mathrm{i}}$ (= ρ / n e $\rho /{n}_{\mathrm{e}}$ ). We obtain n O + ${n}_{{\mathrm{O}}^{+}}$ from M i ${M}_{\mathrm{i}}$ by making an assumption about the He + ${\text{He}}^{+}$ number density relative to the H + ${\mathrm{H}}^{+}$ number density. All quantities are evaluated in a 15 min moving data window that moves in 5 min steps. By generating L $L$ -MLT maps of M i ${M}_{\mathrm{i}}$ for different phases of 102 storms with SYMH minimum lower than 50 ${-}50$  nT, we find that a region of high M i ${M}_{\mathrm{i}}$ appears on the morning side during the storm main phase and lasts for a few days. n O + ${n}_{{\mathrm{O}}^{+}}$ is also high on the morning side during the main phase, but this MLT skewing disappears during the recovery phase. Therefore, the MLT asymmetry of the oxygen torus depends on what parameter is considered.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信