Muhammad Umair Shahid, Ali Samer Muhsan, Norani Muti Mohamed, Siti Noor Azella Zaine, Mirza Muhammad Adnan Baig, Waqar Ahmad, M. Nasir Khattak, Hafiz Muhammad Uzair Ayub
{"title":"Graphene-Modified Photoelectrode for Efficient and Cost-Effective Dye-Sensitized Solar Cells","authors":"Muhammad Umair Shahid, Ali Samer Muhsan, Norani Muti Mohamed, Siti Noor Azella Zaine, Mirza Muhammad Adnan Baig, Waqar Ahmad, M. Nasir Khattak, Hafiz Muhammad Uzair Ayub","doi":"10.1155/er/6672843","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Dye-sensitized solar cells (DSSCs) have been attracted as a real class of building-integrated photovoltaic (BIPV) owing to its natural controllable color transparency, working ability in diffuse light, and low-cost fabrication. The low photoconversion efficiency (PCE) is the main obstacle for BIPV market. The bilayered structure based on mesoporous TiO<sub>2</sub> nanoparticles (NPs) along with TiO<sub>2</sub> blocking layer was introduced to obtain high PCE by optimizing the dye adsorption, avoid recombination via direct electrolyte contact, and enhance light-harvesting ability by providing scattering centers. However, the bilayered structure based on mesoporous TiO<sub>2</sub> network offers inferior charge transfer, thus higher recombination and, consequently, low PCE. In our previous studies, we have developed graphene/TiO<sub>2</sub> blocking layer, graphene/TiO<sub>2</sub> transparent layer, and scattering layer and analyzed individually to improve the electron transport and reduce recombination. In the current work, we have demonstrated the integrated optimized photoelectrode-based DSSCs via the above-mentioned previously developed photoelectrode components with Pt and graphene/polyaniline (PANI) cost-effective counter electrode. Optical property analysis and electrochemical impedance spectroscopy (EIS) have shown that graphene-modified optimum components of photoelectrode have effectively improved the electron transport and light-harvesting ability. Electron lifetime, diffusion coefficient, and diffusion length have been increased by ~87%, ~20%, and ~11%, respectively, as compared to control DSSC based on commercial paste. Consequently, 5.94% of PCE was achieved, which is 20% higher than the DSSCs fabricated with commercial pastes. Moreover, DSSCs based on optimized photoelectrode with graphene/PANI counter electrode have shown 4.04% PCE, which is ~70% of the PCE that was achieved with Pt.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/6672843","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/6672843","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Dye-sensitized solar cells (DSSCs) have been attracted as a real class of building-integrated photovoltaic (BIPV) owing to its natural controllable color transparency, working ability in diffuse light, and low-cost fabrication. The low photoconversion efficiency (PCE) is the main obstacle for BIPV market. The bilayered structure based on mesoporous TiO2 nanoparticles (NPs) along with TiO2 blocking layer was introduced to obtain high PCE by optimizing the dye adsorption, avoid recombination via direct electrolyte contact, and enhance light-harvesting ability by providing scattering centers. However, the bilayered structure based on mesoporous TiO2 network offers inferior charge transfer, thus higher recombination and, consequently, low PCE. In our previous studies, we have developed graphene/TiO2 blocking layer, graphene/TiO2 transparent layer, and scattering layer and analyzed individually to improve the electron transport and reduce recombination. In the current work, we have demonstrated the integrated optimized photoelectrode-based DSSCs via the above-mentioned previously developed photoelectrode components with Pt and graphene/polyaniline (PANI) cost-effective counter electrode. Optical property analysis and electrochemical impedance spectroscopy (EIS) have shown that graphene-modified optimum components of photoelectrode have effectively improved the electron transport and light-harvesting ability. Electron lifetime, diffusion coefficient, and diffusion length have been increased by ~87%, ~20%, and ~11%, respectively, as compared to control DSSC based on commercial paste. Consequently, 5.94% of PCE was achieved, which is 20% higher than the DSSCs fabricated with commercial pastes. Moreover, DSSCs based on optimized photoelectrode with graphene/PANI counter electrode have shown 4.04% PCE, which is ~70% of the PCE that was achieved with Pt.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system