Fabrication of 3D Hemispherical PCL-Based Scaffolds Through Far-Field Electrospinning Method for Their Potential Use as Contact Lenses

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Hamed Hosseinian, Aida Rodriguez-Garcia, Samira Hosseini
{"title":"Fabrication of 3D Hemispherical PCL-Based Scaffolds Through Far-Field Electrospinning Method for Their Potential Use as Contact Lenses","authors":"Hamed Hosseinian,&nbsp;Aida Rodriguez-Garcia,&nbsp;Samira Hosseini","doi":"10.1002/jbm.a.37874","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Maintaining precise control over fiber alignment during the electrospinning process is a significant challenge in material science. Various techniques have been explored to enhance fiber alignment, including the use of rotating collectors, patterned electrodes, and magnetic fields. However, these methods are typically complex, expensive, and involve multiple procedural steps, which can hinder their practical application in industrial settings. In this work, polycaprolactone (PCL) was used to electrospun scaffolds characterized by meshed, aligned, and grid fiber structures. A cost-effective approach for fabricating grid fibers, offering enhanced control over the scaffold, and potentially beneficial for medical applications was developed in this study. Using previously fabricated aligned fibers served as a foundation for developing ocular contact lenses incorporating the newly designed grid and meshed fibers. A comparative proof-of-concept study was conducted, utilizing three distinct fiber orientations to evaluate the efficacy and potential use in ocular drug delivery of each fiber type within the scaffolds. The morphology, light transmittance, mechanical properties, and wettability of the contact lenses were systematically assessed. The PCL-based ocular contact lenses, specifically tailored to conform to the anatomical shape of the eye, demonstrated a significant extension in Rhodamine B residence time, achieving an increase of up to two hours compared to conventional eye drops on the porcine cornea. Among the fiber types analyzed, grid fibers emerged as the most promising, followed by aligned fibers, both exhibiting superior Rhodamine B retention compared to meshed fibers. In conclusion, the innovative advancements in fiber alignment techniques and the use of PCL in the fabrication of ocular contact lenses underscore the potential for enhanced medical applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37874","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining precise control over fiber alignment during the electrospinning process is a significant challenge in material science. Various techniques have been explored to enhance fiber alignment, including the use of rotating collectors, patterned electrodes, and magnetic fields. However, these methods are typically complex, expensive, and involve multiple procedural steps, which can hinder their practical application in industrial settings. In this work, polycaprolactone (PCL) was used to electrospun scaffolds characterized by meshed, aligned, and grid fiber structures. A cost-effective approach for fabricating grid fibers, offering enhanced control over the scaffold, and potentially beneficial for medical applications was developed in this study. Using previously fabricated aligned fibers served as a foundation for developing ocular contact lenses incorporating the newly designed grid and meshed fibers. A comparative proof-of-concept study was conducted, utilizing three distinct fiber orientations to evaluate the efficacy and potential use in ocular drug delivery of each fiber type within the scaffolds. The morphology, light transmittance, mechanical properties, and wettability of the contact lenses were systematically assessed. The PCL-based ocular contact lenses, specifically tailored to conform to the anatomical shape of the eye, demonstrated a significant extension in Rhodamine B residence time, achieving an increase of up to two hours compared to conventional eye drops on the porcine cornea. Among the fiber types analyzed, grid fibers emerged as the most promising, followed by aligned fibers, both exhibiting superior Rhodamine B retention compared to meshed fibers. In conclusion, the innovative advancements in fiber alignment techniques and the use of PCL in the fabrication of ocular contact lenses underscore the potential for enhanced medical applications.

在电纺丝过程中保持对纤维排列的精确控制是材料科学领域的一项重大挑战。人们探索了各种技术来加强纤维对齐,包括使用旋转收集器、图案化电极和磁场。然而,这些方法通常复杂、昂贵,并涉及多个程序步骤,这可能会阻碍它们在工业环境中的实际应用。在这项研究中,聚己内酯(PCL)被用于电纺支架,其特点是具有网状、对齐和网格纤维结构。本研究开发了一种具有成本效益的方法来制造网格纤维,这种方法可增强对支架的控制,并可能有益于医疗应用。利用以前制造的对齐纤维作为基础,开发出了包含新设计的网格和网状纤维的眼部接触镜。我们利用三种不同的纤维方向进行了概念验证对比研究,以评估支架中每种纤维类型在眼部药物输送方面的功效和潜在用途。对隐形眼镜的形态、透光率、机械性能和润湿性进行了系统评估。基于 PCL 的眼部接触镜专门根据眼睛的解剖形状进行了定制,与猪角膜上的传统眼药水相比,这种接触镜显著延长了罗丹明 B 的停留时间,最多可延长两小时。在分析的纤维类型中,网格纤维最有前途,其次是排列纤维,与网状纤维相比,这两种纤维都具有更出色的罗丹明 B 保留率。总之,纤维排列技术的创新进步和 PCL 在眼部接触镜制造中的应用凸显了增强医疗应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信