Ultrathin Screen-Printed Plant Wearable Capacitive Sensors for Environmental Monitoring

IF 3.5
Elliot J. Strand, Anupam Gopalakrishnan, Catherine A. Crichton, Mallory J. Palizzi, Owen Lee, Tomoko Borsa, Eloise Bihar, Payton Goodrich, Ana Claudia Arias, Sean E. Shaheen, Robert R. McLeod, Gregory L. Whiting
{"title":"Ultrathin Screen-Printed Plant Wearable Capacitive Sensors for Environmental Monitoring","authors":"Elliot J. Strand,&nbsp;Anupam Gopalakrishnan,&nbsp;Catherine A. Crichton,&nbsp;Mallory J. Palizzi,&nbsp;Owen Lee,&nbsp;Tomoko Borsa,&nbsp;Eloise Bihar,&nbsp;Payton Goodrich,&nbsp;Ana Claudia Arias,&nbsp;Sean E. Shaheen,&nbsp;Robert R. McLeod,&nbsp;Gregory L. Whiting","doi":"10.1002/adsr.202400177","DOIUrl":null,"url":null,"abstract":"<p>Printable and wearable plant sensors offer an approach for collecting critical environmental data at high spatial resolution to understand plant conditions and aid land management practices. Here, screen printed capacitive devices that can measure relative humidity (RH) directly at the plant-environment interface, are demonstrated in an ultra-thin (&lt;6 µm) form factor. Using screen printing and a temporary tattoo transfer process, a simple technique is established to: 1) enclose printed electronic features between two layers of ethyl cellulose (EtC), 2) mount printed microparticle carbon-based electronics onto a variety of plant structures, and 3) dramatically increase the capacitance and sensitivity for humidity sensors when compared to unencapsulated devices. This sandwich tattoo capacitor (STC) platform exhibits an RH sensitivity up to 1000 pF/%RH and stability while mounted to living plant leaves over several days. Electrochemical impedance spectroscopy (EIS) validates the formation of electric double layers within the EtC films that encapsulate the printed electrodes providing tunable capacitance values based on the ionic concentration of the device transfer fluid.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsr.202400177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Printable and wearable plant sensors offer an approach for collecting critical environmental data at high spatial resolution to understand plant conditions and aid land management practices. Here, screen printed capacitive devices that can measure relative humidity (RH) directly at the plant-environment interface, are demonstrated in an ultra-thin (<6 µm) form factor. Using screen printing and a temporary tattoo transfer process, a simple technique is established to: 1) enclose printed electronic features between two layers of ethyl cellulose (EtC), 2) mount printed microparticle carbon-based electronics onto a variety of plant structures, and 3) dramatically increase the capacitance and sensitivity for humidity sensors when compared to unencapsulated devices. This sandwich tattoo capacitor (STC) platform exhibits an RH sensitivity up to 1000 pF/%RH and stability while mounted to living plant leaves over several days. Electrochemical impedance spectroscopy (EIS) validates the formation of electric double layers within the EtC films that encapsulate the printed electrodes providing tunable capacitance values based on the ionic concentration of the device transfer fluid.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

用于环境监测的超薄丝网印刷植物可穿戴电容式传感器
可打印和可穿戴植物传感器提供了一种以高空间分辨率收集关键环境数据的方法,以了解植物条件并帮助土地管理实践。在这里,丝网印刷电容器件可以直接在植物-环境界面测量相对湿度(RH),展示了超薄(<6µm)的外形因素。使用丝网印刷和临时纹身转移过程,建立了一种简单的技术:1)将印刷的电子特征包裹在两层乙基纤维素(EtC)之间,2)将印刷的微颗粒碳基电子元件安装在各种植物结构上,3)与未封装的设备相比,显着增加了湿度传感器的电容和灵敏度。这种三明治纹身电容器(STC)平台具有高达1000 pF/%RH的相对湿度灵敏度,并且在安装到活植物叶片上几天后具有稳定性。电化学阻抗谱(EIS)验证了EtC薄膜内双电层的形成,该双电层封装了印刷电极,根据器件传递流体的离子浓度提供可调的电容值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信