Ultrathin Screen-Printed Plant Wearable Capacitive Sensors for Environmental Monitoring

Elliot J. Strand, Anupam Gopalakrishnan, Catherine A. Crichton, Mallory J. Palizzi, Owen Lee, Tomoko Borsa, Eloise Bihar, Payton Goodrich, Ana Claudia Arias, Sean E. Shaheen, Robert R. McLeod, Gregory L. Whiting
{"title":"Ultrathin Screen-Printed Plant Wearable Capacitive Sensors for Environmental Monitoring","authors":"Elliot J. Strand,&nbsp;Anupam Gopalakrishnan,&nbsp;Catherine A. Crichton,&nbsp;Mallory J. Palizzi,&nbsp;Owen Lee,&nbsp;Tomoko Borsa,&nbsp;Eloise Bihar,&nbsp;Payton Goodrich,&nbsp;Ana Claudia Arias,&nbsp;Sean E. Shaheen,&nbsp;Robert R. McLeod,&nbsp;Gregory L. Whiting","doi":"10.1002/adsr.202400177","DOIUrl":null,"url":null,"abstract":"<p>Printable and wearable plant sensors offer an approach for collecting critical environmental data at high spatial resolution to understand plant conditions and aid land management practices. Here, screen printed capacitive devices that can measure relative humidity (RH) directly at the plant-environment interface, are demonstrated in an ultra-thin (&lt;6 µm) form factor. Using screen printing and a temporary tattoo transfer process, a simple technique is established to: 1) enclose printed electronic features between two layers of ethyl cellulose (EtC), 2) mount printed microparticle carbon-based electronics onto a variety of plant structures, and 3) dramatically increase the capacitance and sensitivity for humidity sensors when compared to unencapsulated devices. This sandwich tattoo capacitor (STC) platform exhibits an RH sensitivity up to 1000 pF/%RH and stability while mounted to living plant leaves over several days. Electrochemical impedance spectroscopy (EIS) validates the formation of electric double layers within the EtC films that encapsulate the printed electrodes providing tunable capacitance values based on the ionic concentration of the device transfer fluid.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Printable and wearable plant sensors offer an approach for collecting critical environmental data at high spatial resolution to understand plant conditions and aid land management practices. Here, screen printed capacitive devices that can measure relative humidity (RH) directly at the plant-environment interface, are demonstrated in an ultra-thin (<6 µm) form factor. Using screen printing and a temporary tattoo transfer process, a simple technique is established to: 1) enclose printed electronic features between two layers of ethyl cellulose (EtC), 2) mount printed microparticle carbon-based electronics onto a variety of plant structures, and 3) dramatically increase the capacitance and sensitivity for humidity sensors when compared to unencapsulated devices. This sandwich tattoo capacitor (STC) platform exhibits an RH sensitivity up to 1000 pF/%RH and stability while mounted to living plant leaves over several days. Electrochemical impedance spectroscopy (EIS) validates the formation of electric double layers within the EtC films that encapsulate the printed electrodes providing tunable capacitance values based on the ionic concentration of the device transfer fluid.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信