A Standalone and Quantitative Point-of-Need Testing Platform with Manual Readout Capability Based on Smart Hydrogel Strands

Saeed Boroomand, Navid Farhoudi, Christopher F. Reiche, Jules J. Magda, Florian Solzbacher, Lars B. Laurentius
{"title":"A Standalone and Quantitative Point-of-Need Testing Platform with Manual Readout Capability Based on Smart Hydrogel Strands","authors":"Saeed Boroomand,&nbsp;Navid Farhoudi,&nbsp;Christopher F. Reiche,&nbsp;Jules J. Magda,&nbsp;Florian Solzbacher,&nbsp;Lars B. Laurentius","doi":"10.1002/adsr.202400134","DOIUrl":null,"url":null,"abstract":"<p>Smart hydrogels hold great promise as sensing elements that can be tailored to respond to a wide array of biomarkers and can be integrated with different readout modalities. However, a major challenge with these sensors is response time, which depends on the hydrogel swelling behavior and is limited by diffusion. While geometrical miniaturization can accelerate response time, it often requires complex readout systems to detect volume changes, which is detrimental for use in point-of-need (PoN) applications. This study introduces a novel approach for hydrogel-based platforms that realizes important PoN requirements such as sensitivity, cost-effectiveness, instrument-free, and fast response time. The proposed sensing mechanism involves constraining a hydrogel strand at both ends and utilizing a visually observable buckling behavior instead of directly measuring a volume change. The sensing principle is validated by measuring glucose, an important biological analyte, and examines measurement repeatability, response time, sensitivity, and dynamic range. The performance is also demonstrated in blood and serum. The effects of design parameters such as strand length and diameter on sensor performance are also investigated. This new sensor offers a straightforward visual readout without requiring complex instrumentation, paving the way for more accessible and affordable PoN devices.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Smart hydrogels hold great promise as sensing elements that can be tailored to respond to a wide array of biomarkers and can be integrated with different readout modalities. However, a major challenge with these sensors is response time, which depends on the hydrogel swelling behavior and is limited by diffusion. While geometrical miniaturization can accelerate response time, it often requires complex readout systems to detect volume changes, which is detrimental for use in point-of-need (PoN) applications. This study introduces a novel approach for hydrogel-based platforms that realizes important PoN requirements such as sensitivity, cost-effectiveness, instrument-free, and fast response time. The proposed sensing mechanism involves constraining a hydrogel strand at both ends and utilizing a visually observable buckling behavior instead of directly measuring a volume change. The sensing principle is validated by measuring glucose, an important biological analyte, and examines measurement repeatability, response time, sensitivity, and dynamic range. The performance is also demonstrated in blood and serum. The effects of design parameters such as strand length and diameter on sensor performance are also investigated. This new sensor offers a straightforward visual readout without requiring complex instrumentation, paving the way for more accessible and affordable PoN devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信